EVOLUTION OF SEAFLOOR SPREADING RATE BASED ON 40Ar DEGASSING HISTORY

Eiichi Tajika1 and Takafumi Matsui

Department of Earth and Planetary Physics, University of Tokyo

Abstract A new degassing model of 40Ar coupled with thermal evolution of the mantle is constructed to constrain the temporal variation of seafloor spreading rate. In this model, we take into account the effects of elemental partition and solubility during melt generation and bubble formation, and changes in both seafloor spreading rate and melt generation depth in the mantle. It is suggested that the seafloor spreading rate would have been almost the same as that of today over the history of the Earth in order to explain the present amount of 40Ar in the atmosphere. This result may also imply the mild degassing history of volatiles from the mantle.

Introduction

Temporal variation of seafloor spreading rate over the history of the Earth has profound influences on the global geochemical cycle through volatile degassing from and regassing into the Earth. In other words, it affects the evolution of the atmosphere and oceans, and thus the terrestrial environment [e.g., McGovern and Schubert, 1988; Tajika and Matsui, 1992, 1993]. It is, however, difficult to reconstruct such a temporal variation of seafloor spreading rate from any geological evidence. This is because the ancient seafloor itself has subducted into the mantle. Because the seafloor spreading rate plays a dominant role in transfer of internal heat [e.g., Turcotte and Schubert, 1982], we may obtain the evolution of seafloor spreading rate by studying the global geochemical cycle coupled with the thermal evolution of the mantle.

In this paper, we try to infer the temporal variation of seafloor spreading rate, using a new degassing model of 40Ar coupled with thermal history of the mantle in which temporal variation of degassing rate is assumed to depend on changes in seafloor spreading rate and melt generation depth in the mantle.

Models

We use 40Ar as a tracer for the mantle degassing. 40Ar is considered to be the best tracer for the degassing history of the mantle among various volatile components. This is because (1) 40Ar is a decay product of potassium, and so very little amount of 40Ar existed at the time of formation of the Earth. This means that 40Ar may not have experienced impact degassing which is considered to have occurred during accretion of the Earth [e.g., Matsui and Abe, 1986]. (2) The existence of 40Ar in the present atmosphere suggests the occurrence of subsequent continuous degassing over the history of the Earth [e.g., Turekian, 1964; Hamano and Ozima, 1978]. And (3) 40Ar probably has not experienced any regassing into the mantle, which means that we can only consider the degassing process for the case of 40Ar. In these respects, 40Ar is considered to be an adequate indicator to constrain the degassing history of the Earth after its accretion. 40Ar is produced by potassium decay as 40K\rightarrow40Ar, where the decay constant is λ_{K} = 5.85 x 10$^{-11}$ yr$^{-1}$. 40Ar produced in the mantle degasses to the atmosphere mainly through the mid-ocean ridge volcanism accompanied by the formation of oceanic crusts. Since potassium is an incompatible element, mantle potassium concentrates into melt being associated with melt generation in the mantle below the mid-ocean ridge, and eventually solidifies as the oceanic crusts. Thus, potassium concentrates into the oceanic crust from the mantle concurrently with 40Ar degassing. Potassium in the oceanic crust also decay to 40Ar which would degas to the atmosphere probably by diffusion through the oceanic crust or by arc volcanism at the subduction zone. Potassium remaining in the oceanic crust would finally return to the mantle.

The continental crust is considered to have formed by remelting of the oceanic crust with water at the subduction zone [e.g., Campbell and Taylor, 1983]. If this were the case, the parts of potassium in the subducting oceanic crusts might be transported to the continental crust at the time of its formation. 40Ar produced by potassium in the continental crust has degassed to the atmosphere with decay constant $K_{\text{D,oc}}$ = 3.71 x 10$^{-10}$ yr$^{-1}$ which is estimated from a relation between K-Ar mineral ages and Rb-Sr whole rock ages for the same crustal rock [Hamano and Ozima, 1978].

We can calculate transportation of K and Ar between various reservoirs using a simple box model composed of three potassium reservoirs (mantle, oceanic crust, continental crust) and of four argon reservoirs (mantle, oceanic crust, continental crust, atmosphere). The mass balance equations for argon and potassium are as follows:

\[
\frac{d}{dt}(^{40}\text{K})_{\text{mant}} = -\lambda_{\text{T}}(^{40}\text{K})_{\text{mant}} - K_{\text{F}}(^{40}\text{K})_{\text{mant}} + (1 - A_{\text{K}})\lambda_{\text{T}}(^{40}\text{K})_{\text{oc}} \\
\frac{d}{dt}(^{40}\text{K})_{\text{oc}} = -\lambda_{\text{T}}(^{40}\text{K})_{\text{oc}} + K_{\text{F}}(^{40}\text{K})_{\text{mant}} - \tau_{\text{R}}^{-1}(^{40}\text{K})_{\text{oc}} \\
\frac{d}{dt}(^{40}\text{Ar})_{\text{mant}} = \lambda_{\text{T}}(^{40}\text{K})_{\text{mant}} - K_{\text{F}}(^{40}\text{Ar})_{\text{mant}} \\
\frac{d}{dt}(^{40}\text{Ar})_{\text{oc}} = \lambda_{\text{T}}(^{40}\text{K})_{\text{oc}} - \tau_{\text{R}}^{-1}(^{40}\text{Ar})_{\text{oc}} \\
\frac{d}{dt}(^{40}\text{Ar})_{\text{latm}} = K_{\text{F}}(^{40}\text{Ar})_{\text{mant}} + \tau_{\text{R}}^{-1}(^{40}\text{Ar})_{\text{oc}} + K_{\text{D,ocl}}(^{40}\text{Ar})_{\text{oc}}
\]

where τ_{R} is the residence time of seafloor (area of seafloor/seafloor spreading rate), K_{F} is the coefficient of degassing rate, and λ_{T} is the total 40K decay constant = 5.305 x 10$^{-10}$ yr$^{-1}$. Subscripts represent as follows: mant = mantle, oc = oceanic crust, cc = continental crust, and atm = atmosphere, respectively. A_{K} is the accretion ratio of potassium, which is a free parameter in this model. The fraction A_{K} of potassium in the subducting oceanic crust is assumed to be transported to the continents with continental growth. A_{K} is iteratively determined so that the amount of potassium in the continental crust at present may be equal to the observed amount. We considered various models of continental growth. However, the continental growth model did not affect the numerical results seriously (Table 2), and then we use the model with a constant growth rate as a standard.

The degassing process of Ar is modeled as follows: 40Ar in a certain volume V_{o} of the mantle degasses to the atmosphere when oceanic plates are formed at the mid-ocean ridge. This volume V_{o} probably depends on the seafloor spreading rate S_{r} and the melt generation depth d_{m} in the mantle. Assuming a first order rate process (i.e., assuming a homogeneous mantle), the degassing rate F_{D} of 40Ar from the mantle is expressed by

\[
F_{D} = \frac{V_{o}}{d_{m}}
\]
$F_D = K_{Ar} \cdot (^{40}Ar)_{mant}$ \hspace{2cm} (8)

where K_{Ar} is the coefficient of degassing rate of argon.

In the previous studies of degassing history [e.g., Turekian, 1964; Hamano and Ozima, 1978], the coefficient of degassing rate was given as an adjustable parameter for the degassing history and called “degassing constant”. However, in this study, we define the coefficient of degassing rate as follows [e.g., Tajika and Matsui, 1992]:

$$K_{Ar}^{*}(t) = f_{Ar} \cdot V_D(t)/V_M = f_{Ar} \cdot S_r(t) \cdot d_m(t)/V_M$$ \hspace{2cm} (9)

where V_M is the volume of the mantle, $V_D(t)$ is the volume of mantle material from which degassing occurs in an unit time, $S_r(t)$ is the seafloor spreading rate, and $d_m(t)$ is the melt generation depth in the mantle. Here we assume the degassing volume $V_D = S_r \times d_m$, which is time-dependent in this case. f_{Ar} is the degassing fraction of argon which represents the mass ratio of argon partitioning into the gas and melt phases to the total amount originally included in the degassing volume [Tajika and Matsui, 1992]. The effect of processes such as melt generation, partition of volatile elements to the melt, and bubble formation under the mid-ocean ridge are included in this factor. f_{Ar} can be estimated from observation and physical quantities such as partition coefficient, solubility in the silicate melt and so on. [Tajika and Matsui, 1992]. For concentration, we assume that mantle volatile components are released effectively with the melt segregation at this depth. Temporal variation of the melt generation depth in the mantle [Tajika and Matsui, 1992]. On the other hand, temporal variation of the seafloor spreading rate is related to the mantle heat flow. Both the mantle heat flow and the average mantle temperature are obtained by solving the thermal evolution of the mantle [Tajika and Matsui, 1992].

We use the parameterized convection model to calculate the whole mantle convection [e.g., Schnibbert et al., 1980; Christensen, 1985; McGovern and Schubert, 1989; Tajika and Matsui, 1992]. In this model, we trace the temporal variations of average mantle temperature T_m and heat flow q from the mantle which is parameterized in terms of the Rayleigh number Ra. The equation of conservation of energy is given by

$$\rho C_p (R_m^2 - R_s^2) \frac{dT_m}{dt} = -3 \pi m^2 q + (R_m^3 - R_s^3)Q$$ \hspace{2cm} (10)

where ρ is the density, C_p is the specific heat at constant pressure, and R_m and R_s are the outer and inner radii of mantle, respectively. Q is the energy production rate by decay of radiogenic heat sources in the mantle. Mantle heat flow q is parameterized in terms of the Rayleigh number Ra as,

$$q \propto k(T_m - T_s)/(R_m - R_s)Ra$$

where k is the thermal conductivity and T_s is the surface temperature. The factor $k(T_m - T_s)/(R_m - R_s)$ is the Rayleigh-Nusselt exponent, usually taken as 0.3 [e.g., Schubert et al., 1980]. Because $q \propto \sqrt{Ra}$ [e.g., Turetto and Schubert, 1982], we can estimate S_r from q by using a relation of $S_r \propto q^\alpha$ [e.g., Christensen, 1988; McGovern and Schubert, 1989; Tajika and Matsui, 1992]. In this way, we can obtain the average mantle temperature and the seafloor spreading rate by solving the above equations (we call this “model A”).

Forsyth and Uyeda (1975) suggested that plate motion may be driven by the forces acting on the downgoing slab and that drag force on the bottom of oceanic plates may be less important. If this were the case, the oceanic lithosphere would couple weakly with the underlying flow because of lower viscosity of asthenosphere [Forsyth and Uyeda, 1975]. This is consistent with the numerical result of thermal history of the mantle with variable viscosity [Christensen, 1985]. According to Christensen (1985), the Rayleigh-Nusselt exponent β should be nearly zero under the condition of the mantle convection, and in such a case seafloor spreading rate becomes to be constant in spite of drastic change in convective vigor. Therefore we consider another model in which β is set to be zero (“the model B”). In this model, the seafloor spreading rate is constant at the present value over the history of the Earth.

We need to know the total amount of potassium to calculate the amount of 40Ar produced by the potassium decay. Because it is difficult to estimate potassium content in the present mantle, we use its upper estimate of 400 ppm and lower estimate of 100 ppm derived from the discussion of surface heat flow [Hamano and Ozima, 1978]. Recent geochemical estimates on the abundance of mantle potassium [e.g., Jochum et al., 1983], however, agree well with the average of the two (≈ 250ppm). We therefore regard 250ppm as the most probable value in this study. The initial average mantle temperature T_0 is simply assumed to be in the range of 2000-3000K.

Numerical Results

Figure 1 shows the temporal variations of the seafloor spreading rate, the melt generation depth in the mantle, and the melting fraction in the mantle.
the mantle degassing volume from which the degassing is assumed to occur. These variations are closely linked with thermal evolution of the mantle. In the model A, average mantle temperature, mantle viscosity, and mantle heat flow are shown to be greatly changed throughout the history of the Earth. These features are qualitatively similar to the results of previous studies [e.g., Schubert et al., 1980; McGovern and Schubert, 1989; Sclater et al., 1980]. As a consequence, the seafloor spreading rate in Archean is estimated to be 20-16 times larger than that of today and the melt generation depth at that time to be about 70-100 km (i.e., 2-3 times larger than that of today), resulting in a large mantle degassing volume. However, the degassing fraction X is about 0.35 for this model (Table 1). This strongly suggests the vigorous degassing during the Hadean and Archean periods, and thus the total amount of 40Ar degassed to the atmosphere would be larger.

In the model B, however, degassing from the mantle would be less effective compared to the model A (Figure 1b) because the mantle degassing volume varies only with melt generation depth in this case. The numerical results on 40Ar degassing are summarized in Table 1.

Figure 2 shows the total amount of 40Ar degassed to the atmosphere as a consequence of each corresponding degassing history (the error bars represent uncertainties of the mantle potassium content, 100-400 ppm). In the model A, compared to the observed value, 40Ar has degassed too much to the atmosphere for any initial average mantle temperature (Figure 2a). As shown in Table 1, the degassing fraction X, which represents the ratio of the amount of 40Ar degassed to the atmosphere to the total amount of 40Ar produced by the potassium decay, is about 0.7. These results reflect more effective degassing of the model A. On the other hand, in the model B, the amount of 40Ar degassed to the atmosphere shows excellent agreement with the present observed value (Figure 2b). The degassing fraction X is about 0.35 for this model (Table 1). This means a mild degassing history of the model B. Figure 2c and 2d show the results for the cases with different constant seafloor spreading rate (larger and smaller than the present one) for comparison. In the case higher than the present value, the amount of 40Ar degassed to the atmosphere is much larger (Figure 2c), whereas in the case lower than the present value, the amount is much smaller (Figure 2d). This result strongly suggests that the seafloor spreading rate may not have changed greatly from the present value over the Earth’s history. It is also suggested that the oceanic lithosphere would have been as same as that of today, with possible variations of at most 2-3 times larger than that of today.

Discussion

The seafloor spreading rate is suggested to have been almost constant during the Earth’s history to explain the present amount of 40Ar in the atmosphere. In this respect, the parameterized convection model with $\beta = 0$ is more reasonable than the usual model with $\beta = 0.3$. This would be, in turn, consistent with the idea that the oceanic lithosphere would couple weakly with the underlying asthenosphere because of lower viscosity of the latter. The plausibility of constant seafloor spreading rate was discussed by Christensen (1985) based on theoretical considerations and geological evidence.

The numerical results, however, include some sort of ambiguities because of simple assumptions for the model and also uncertainties in physical parameters. Therefore, we performed sensitivity analysis with respect to the standard model (model B: $T_{\text{m}}(K) = 2000$, $K_{\text{mant}} = 250$ ppm) which gives a proper amount of 40Ar degassing to the atmosphere. The results are summarized in Table 2. As shown in Table 2, the ambiguities caused by uncertainties of the model parameters and assumptions may not drastically change the results. Even if we take into account the effects of hot spot volcanism and mantle plumes on the 40Ar degassing, we do not need to change our conclusions. This is simply because much larger amount of 40Ar must have degassed in this case.

The assumptions of homogeneous mantle, constant partition coefficient under the variable conditions from the melt generation depth to the surface, and the definition of the mantle degassing volume would provide another source for uncertainties. Because the extent of mantle heterogeneity and the change in partition coefficients have not been known, there remain ambiguities due to these assumptions. Although the mantle degassing volume is defined as $SR \times dm$, in this study, the studies of flow patterns of ascending mantle materials and

Table 1. 40Ar degassing history for the models A and B (for the mantle potassium content 250 ppm). T_{m}^β is the initial average mantle temperature. The superscript β represents the present value and the overline represents the time average over the history of the Earth. X is the ratio of the amount of 40Ar degassed to the atmosphere to the total amount of 40Ar produced by potassium decay.

<table>
<thead>
<tr>
<th>Model</th>
<th>$T_{\text{m}}^\beta(K)$</th>
<th>SR/Σ^\ast</th>
<th>SR/Σ^\ast</th>
<th>$\Delta m/\Delta m^\ast$</th>
<th>$V_{\text{d}}/V_{\text{d}}^\ast$</th>
<th>40Ar†</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3000</td>
<td>8.69</td>
<td>1.93</td>
<td>30.75</td>
<td>13.30</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>5.48</td>
<td>1.73</td>
<td>11.12</td>
<td>13.30</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>3.72</td>
<td>1.52</td>
<td>6.44</td>
<td>12.90</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2500</td>
<td>1.0</td>
<td>2.33</td>
<td>2.33</td>
<td>8.42</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>1.50</td>
<td>1.50</td>
<td>6.61</td>
<td>0.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>0.5</td>
<td>2.04</td>
<td>1.02</td>
<td>4.96</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>1.25</td>
<td>0.62</td>
<td>3.53</td>
<td>1.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>2.0</td>
<td>2.93</td>
<td>5.87</td>
<td>13.30</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>1.89</td>
<td>3.78</td>
<td>11.60</td>
<td>0.61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† amount of 40Ar degassed to the atmosphere in 10^{16} kg at $t = 4.6$ Ga (cf. the observed value is 6.8×10^{16} kg).
Table 2. Summary of sensitivity analysis

<table>
<thead>
<tr>
<th>parameters/assumptions</th>
<th>uncertainties</th>
<th>errors †</th>
</tr>
</thead>
<tbody>
<tr>
<td>accretion ratio A_K</td>
<td>0~1.0</td>
<td>-5.0%~6.2%</td>
</tr>
<tr>
<td>continental degassing rate $K_{B_{dc}}$</td>
<td>±50%</td>
<td>±3.6%</td>
</tr>
<tr>
<td>mantle solidus profile</td>
<td>±50%</td>
<td>±30%</td>
</tr>
<tr>
<td>continental growth model</td>
<td>(no continental growth)</td>
<td>-5.0%</td>
</tr>
<tr>
<td>(growth after 2.5Ga BP)</td>
<td>-3.3%</td>
<td></td>
</tr>
<tr>
<td>degassing history</td>
<td>(no degassing for the first 1.0Ga)</td>
<td>-6.0% ‡</td>
</tr>
</tbody>
</table>

† Difference between the result of degassed 40Ar for the standard case (model B: $T_{0} = 2000$K, $(K)_{mantle} = 250$ppm) and that for sensitivity analysis (values are shown relative to the standard result in %).
‡ Relative to the result of the model A.

Acknowledgments. This research was partially supported by the grants-in-aid for Scientific Research (No. 02804023) of the Ministry of Education of Japan.

References

T. Matsui, Department of Earth and Planetary Physics, Faculty of Science, University of Tokyo, Tokyo 113, Japan.

E. Tajika, Geological Institute, Faculty of Science, University of Tokyo, Tokyo 113, Japan.