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Analysis of solar system exploration data
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Remote sensing in planetary exploration

« Radio wave measurement
— Doppler measurement of spacecraft signals
— Spectroscopy
— Radar sounding
— Radio interferometry (e.g, SAR, VLBI)

* Optical (short wavelength EM wave) measurement
— Imaging
— Spectroscopy
— Laser sounding



Radio occultation measurement

Planctary atmosphere

/ >

14 (Y

% Ground
w station

Spacecraft
motion

Prtet nophea st
ity et S ——

Observation of gravity anomaly by Doppler
tracking of spacecraft (NASA’s Juno)

Vertical temperature profiles of planetary atmospheres

(Mueller-Wodarg et al.)
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Radio occultation measurement

SPACECRAFT

EARTH
STATION

a : Impact parameter
o : Bending angle

n : Refractive index —
r : Distance from planet center

"1 on dr

Tyler (1987)
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Retrieval of a temperature profile (Venus orbiter Akatsuki)
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Allan deviation

Phase (rad>

Frequency (Hz>

Required accuracy

0.04

-0.08
540

1.0E-09

1.0E-10

1.0E-11

1.0E-12

1.0E-13

1

1 1 1

542

| Change in phase/frequency caused by a Gaussian-

type 0.2 K-perturbation with 1 km-thickness

Transmit frequency ~ 8 GHz

Required frequency accuracy ~ 0.02 Hz

- Relative accuracy ~2 x 10712

The stability of usual oscillators > 106
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Ultra-Stable Oscillator (USO) on Akatsuki

Stability of USO after the launch
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The requirement (Allan dev <
1x107!2 for t = 1-1000 s) is
satisfied.



L — — . Off-line analysis

Data acquisition

Received signal: 8.4GHz
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Required accuracy

| Change in phase/frequency caused by a Gaussian-
type 0.2 K-perturbation with 1 km-thickness

Phase (rad>

Phase accuracy o,,4=0.01 rad
- Required S/N ratio = 1/6,,4> = 10000

Frequency (Hz>

—p.08 1 1 I 1
540 542 544 546 548 550

Time {(sec?

Need for narrow-band filtering (example from Akatsuki)

 Signal level at the receiver P=3.0 x 107 W (at 1.73 x Earth-Sun-distance)

* Noise temperature of the receiver =96 K (Usuda Deep Space Center)
2> kT ~ 1.3 x 102! (J = W/Hz)

Letting the band width B (Hz), the S/N ratio is given by
P/kTB ~2.3x 10%B

So that the S/N ratio is higher than the required value of ~10000, we require
B <20 Hz

Dwy Jar

Usually the influence of the uncertainty in toooco
the orbital motion the transmit frequency is
larger than this bandwidth. We must first
stabilize the signal frequency.
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Frequency determination by FFT & spectral fitting

Successive FFTs for short segments
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Frequency resolution of FFT T time interval of FET
1 : sampling interval
Af=1/T=1/(t * N) N : FFT length
=1/((1/B) * N) B : bandwidth = sampling
- B/N frequency (for complex data)

Power Density

For example, to achieve a frequency accuracy of Af=0.02 Hz,

the time interval should be T = I/Af =50 s.

(If the sampling frequency is B = 25 kHz, the FFT length is
N=T/t=T/(1/B) =T*B = 1250000)

Fitting of Sinc function
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Frequency determination by FFT & spectral fitting

Successive FFTs for short segments
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Rough estimate of the frequency time series
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Frequency

Frequency

Extracting the roughly estimated frequency

Rough estimate by FFT
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Phase unwrapping

° Phase

Time =2

With sufficiently low-noise, the phase can be obtained from the
real and imaginary components of the data at each time step.
The frequency is obtained by differentiating the phase.

Radio occultation measurement

SPACECRAFT

EARTH
STATION

a : Impact parameter
a : Bending angle W

n : Refractive index
r : Distance from planet center Tyler (1987)

| A :
a(a)=-2a Lon dr

2O (nr) —a®

Abel transformation:



Refractive index 7 is related to atmospheric structure:

p(r) = (n(r)=1)x10°

KN, (r)

neutral
atmosphere

N()
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0
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plasma

: Refractivity

Retrieval of the neutral atmosphere’s temperature based on hydrostatic

equilibrium:

N
)

I(r,,)+

kN (r

rtop

"

(r)g(r’dr

* Temperature at the upper boundary should be given from empirical models.
The effect of the upper boundary almost disappears 1-2 scale heights

below the boundary.

Retrieval of a temperature profile
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Temperature profiles of the Venus atmosphere obtained by
Akatsuki radio occultation

Mar 2016 - Feb 2017
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T : temperature

z : altitude

g : gravitational acceleration

¢, : specific heat for constant pressure

Examples of Venus’ electron density profile from Akatsuki
radio occultation
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Accurate retrieval of phase difference
between two signals

» The phase difference between right-circularly polarized (RCP) and
left-circularly polarized (LCP) waves gives the Faraday rotation of the
plane of polarization by magnetized plasma.

» Faraday rotation can be used to probe the magnetic field structure in
the solar corona.

» The expected phase difference is of the order of 0.001 rad, which is

difficult to measure for each wave due to large fluctuation of the
received frequency.

C3 1997/05/01 01:52

Derivation of the phase difference between RCP and LCP
waves with cross-correlation analysis

Phases of RCP and LCP waves

8.5 = - - —
"
R + % + L o + . + J ’16@53deth' iy
~ B3 T+ +o S + +ox . ’160536urdiphs”*
w 4 + + = + + ®
L + + + H s + +|
4 8.2 . o L Jox » % + of + i oo + A
E 8.1 r PR P ® *ox + + + G + ¥ + 4
- aF + + X +oow + + + + i
* g + ® toE + ¥ ® + o *ox + " *
w -8.1 + +ow + S o + .
w . w yo® x b ¥ M + o . P
2 -a.2 | » + + X + + ’I;< + o= + w + .4
H * o + _F + + + + o o ++ vt + o
o -68.3 & ¥ - - T - " . + o
- = # ® # g
8.4~ + tox ++ LA + o Lt " P < A tow
-8.5
508 502 504 506 508 518
TIHE {SEC)

Cross-correlation

T2 2.8 Rs (2018/01/09)
L& 90 = 5&-@ Hi-T)dt
“Te
5.3 Rs (2018/01/04)

The phase difference is obtained from the
time lag t where the cross correlation peaks.

Faraday rotation (deg)

10.3 Rs (2017/12/29)

L T R S % I = - TV B + -]
T T

ki 106 Rs (2016/02/08)

|
—

0 50 100 150 200 250 300

Time (min)



Doppler tracking of Juno spacecraft

The spacecraft acts as a test particle falling in the gravity field of the planet. Jupiter’s
gravity is inferred from range-rate measurements between a ground antenna and the
spacecraft during perijove passes.

The ground station transmits two carrier signals, at 7,153 MHz (X band) and 34,315
MHz (Ka band). On board, an X-band transponder and a Ka-band frequency translator
lock the incoming carrier signals and retransmit them back to the ground station at
8,404 MHz and 32,088 MHz, respectively. The range-rate (Doppler) observable is
obtained by comparing the transmitted and received frequencies.

Spherical harmonics representation of planetary gravity fields is determined by the
density distribution inside the body.

Doppler tracking of
Juno spacecraft

prertet EUPHOAL opatf
N mm PERTURAED ORMT e

“Juno detected a gravity signal powerful
enough to indicate that material is flowing
as far down as 3,000 kilometres.”




Less et al. (2018)

Figure 3 | Gravity disturbances due to

p= atmospheric dynamics. a, An image of Jupiter
60 = taken by the Hubble Wide Field Camera in 2014
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“The observed jet streams, as they appear at the cloud level, extend
down to depths of thousands of kilometres beneath the cloud level,

probably to the region of magnetic dissipation at a depth of about 3,000
kilometres”

Planetary images

» The contrast in an original image is dominated by geometrical

(illumination) effects. To visualize the detail of the surface, the effects
need to be removed.

onginal image

UV image of Venus
taken by Akatsuki




Photometric correction

» The incident solar flux at each position on the planetary surface is
proportional to the cosine of the incidence angle.

» The illumination effect can be roughly removed by dividing the original
image by the model image, which is cosine of the incidence angle. (In
real applications, more complicated model is used.)

Original image cos & Corrected image

High-pass filtering

» To see the details of the surface, high-pass filtering is frequently used.

» High-pass filtering can be done by subtracting a smoothed image from
the original (corrected) image. Moving average (running average) with a
Gaussian function is frequently used for smoothing.

Corrected image Smoothed image Filtered image

)




Projection onto planetary coordinate

» Movement of the atmosphere can be observed by projecting successive
images onto the planetary coordinate.
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Cloud tracking

« Movement of the atmosphere can be observed by projecting successive
images onto the planetary coordinate.
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Cloud-tracked vectors (Nara, 2020)
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Cloud tracking with cross-correlation method

Correlation
coefficient

. ‘\ o~
Displacement < -

in Y-direction . > _Displacement
in X-direction

» The peak position on the correlation
surface gives the displacement vector.

* Division the displacement by the time
interval gives the velocity vector.
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In-situ measurements of zonal winds
(Schubert et al. 1980)

Zonal circulation at velocities 60 times faster than the solid surface




Maintenance of the superrotation by waves

Horizontal momentum transport Vertical momentum transport

Waves or Turbulence Thermal

Equator

Acceleration

Deceleration

Tracking of faint cloud features in thermal
infrared images

UV (283 nm) and thermal infrared (10 um) images taken
simultaneously by UVI and LIR (Fukuhara et al., 2017)

UV (283 nm) thermal infrared (10 um)

Thermal infrared images allows observations of
all local time regions



Characteristics of LIR data

Original LIR images

High pass filtered images
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* Most of the small-scale cloud features have amplitudes comparable to
or smaller than the LIR’s temperature resolution of 0.3 K.
* Difficult to track cloud patterns in original images
High-pass filtered map Averaging images in a coordinate system
without averaging moving with the background atmosphere
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* Running-averaging of images in the time domain in a coordinate system
moving with the superrotation

* S/N ratio is increased and topography-related features are smoothed
out.
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