Atmospheric chemistry and
aerosols (I)

Composition of planetary atmospheres

Object Mass g'arb':: Nitrogen | Oxygen | Argon | Methane | Sodium | Hydrogen | Helium Other
(kilograms) | 2% |

Sun 3.0x10 71% 26% 3%

Mercury 1000 42% 22% 22% 6% 8%

Venus 4.8x10° | 96% 4%

Earth 1.4x10%" [ 78% | 21% | 1% <1%

Moon 100,000 1 70% 1% 29%

Mars 25x10™ | 95% | 2.7% \ 1.6% | 0.7%

Jupiter 1.9x10% | 89.8% | 10.2%

Saturn 5.4x10°° | 96.3% | 3.2% | 0.5%

Titan 9.1x10™ 97% | 2% | 1%

Uranus 8.6x10>° | 2.3% 825% | 15.2%

Neptune | 1.0x10%® | 1.0% 80% 19%

Pluto 1.3x10™ 8% 90% | 2%

\ from NASA HP

photosynthesis
6 CO; + 6H,0 + energy » CgH1206 + 6 O2




Need for understanding chemistry
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Chemical kinetics

A reaction between reactants A and B to form product C:
A+B->C reaction rate = k [A] [B]
A+B+M>C+M reaction rate = k [A] [B] [M]

M is any inert molecule that can remove the excess energy.

k is the reaction rate constant that usually depends on the temperature as
(Arrhenius equation):

Reaction without catalyst

k = A eEXpl| — & | - - - - Reaction with catalyst
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Reaction path
P from Wikipedia



Production and destruction of ozone

Chapman theory

0, + hv > 20
O0+0,+M=> 0z +M

30, > 20,

()3 +hv>0+ C)z
0 +0, > 20,

20, > 30,

Chapman theory predicts an ozone
amount of several times larger than
the observations.

Other loss mechanisms are required.

so 1 | ] | L) ] L) Ll |

H
o
-

O T I T T I T T

\ Calculated

S
Ny
~.

Observed ™\

Altitude (km)
S

S
\
\
\
\
\
\

\

aaalaaataaantanaedansedagnalanrslaann

10 1 1 1 1 1 L 1 1
2 4 6 8 10
Ozone concentration, 1072 molecules cm™

=

Figure 3.1 An ozone profile calculated with the Chapman reac-
tions at the equalor overestimates the ozone compared with obser-
vations over Panama at 9° N on November 13, 1970. The reason
is that natural calalysts that destroy ozone are omitted from the
oxygen-only Chapman reactions. (Adapled from Seinfeld and
Pandis (1998). Reproduced with permission. Copyright 1998,
John Wiley and Sons.)

Catling & Kasting (2017)

Catalytic cycles

X+ 05> X0 +0,
XO+0>X+0,

O +0; > 20, X : Free radical such as OH, NO, Cl, Br

Reaction without catalyst

- - - - Reaction with catalyst

Energy

Reaction path

The net result of the catalytic cycle
is to remove O and O; rapidly.



Stability of CO, atmosphere

2(CO,+hv —» CO+0)
0O+0+M—-0,+M

Net: 2CO, — 2CO + O,

The reaction CO + O - CO, is very slow (spin forbidden).

Mars and Venus atmospheres are expected to be converted to
CO and O, in 6000 years.

Catalytic cycle on Mars ?

On Mars, OH radicals are thought to play crucial roles.

H;,O+hv—>O0OH+H
McElroy and Donahue [1972] Parkinson and Hunten [1972]
Production of OH Production of OH
H+0, +M— HO, +M ﬁfg;f’ggfi'.’,f&:éf )
[HO,+0 —[oH}+0, [H,04+hv —[OH}OH
Production of CO, Production of CO,
CO+OH}> CO, +H, 2(CO+OH > CO; +H),

Net reaction Net reaction

CO+0+M—>CO,; +M. 2C0+0, — 2CO,.



Atreya and Gu (1994)
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14 = 0.4; see text).

Photochemistry is effective even near the surface on Mars
because of the thin atmosphere.

Catalytic cycle on Venus?

Cl radicals are thought to play crucial roles.

[CIcO) Cl+CO+M —CICO } M (27)
Cl(;rlg{? -: [I;d—}CC[;C? ElM 8;; CICO + 0, + M —|CIC(0)00+ M (29)
2 CIC(0)00 +Cl - CO, + CIO + Cl (30)

Net: CO+0 — CC—'E (E) ClO+0—=Cl+ D'z (26)
Net: CO + 0 — CO, (G1)

Cl+CO +M —|[CICOH+ M (27) Cl+CO+M —[CICO M 27
CICO + 0, + M — CIC(0)00|+ M (29) CICO + 0, + M —|CIC(O)OO |+ M (29)

CIC(0)00 +0 — €0, + 0, +Cl (31) CIC(0)00 + hv — CO, + ClO (32)
ClO+0—Cl+0, (26)

Net: CO +0 — CO, (G2)
Net: CO +0 — CO, (G3)

Mills et al. (2007)



Mills et al. (2007)

Vega-2 X-ray spectrometer result
(Andreychikov et al. 1987) >

CoO,
hv :
= ™ X
CcoO '
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v o
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Figure 3. Schematic showing primary pathways for production of
CO, via chlorine chemistry. The reaction CICO + 0 — CO, +Cl
accounts for 15 and 20% of the column total CO, production in the
+0.5¢ and +2.0c models from Table S, respectively.

CICO, CICO; and other key species have never been observed.

Clouds/aerosols

Earth’s stratospheric
aerosols

e Controlling planetary albedo
e Scattering greenhouse effect

e Regulating atmospheric species transported to the
upper atmosphere



Cloud formation

Andrews (2010)
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RH=20% a : radius of droplet
.. e : partial vapor pressure
5 e, : saturation vapor pressure
< y . surface tension
& o - liquid density
é RH=110% R, : gas constant
G T : temperature
a \ Radius
If a cloud droplet is to survive, it must
somehow attain a radius greater than the
Pure water: equilibrium radius a corresponding to the
equilibrium radius  relative humidity(RH) ambient relative humidity
0.01 um > 112% - Need for condensation nucleus
0.1 um -2 101%
flat surface - 100%

Role of soluble cloud condensation nuclei (CCN)

w/o solute (Kelvin effect)
Andrews (2010)
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The Kohler curve (solid) for the relative humidity RH = e/e; over a spherical droplet of water
containing solute, as a function of droplet radius g, at 5°C. The solute is taken to be 10~? kg of
NaCl. The Kelvin factor is given by the dotted curve and the Raoult factor is given by the
dash-dotted curve. The thick horizontal dashed line and points A and B are discussed in the text.
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Example of the composition of ice forming nuclei in Earth’s troposphere

Composition of CCN

(Pruppacher & Klett 1997)

- . TABLE 9.6
Composition of ice forming nuclei derived from aerosolized soil in Montana (from Rosinski
et al., 1981).
Ice-forming nuclei active at temperature
) _ Aerosol particles -12°C -15°C ~20°C
Chemical composition number 9% number % number % number %
Clay minerals:
montmorillonite 194 24 28 18 17 13 41 28
feldspar 287 36 T 48 41 32 54 38
illite 163 20 37 24 39 31 28 19
miscellaneous 27 3 8 5 19 15 10 7
Organic particles 139 17 7 5 12 9 11 8
Number of particles:
analyzed 810 154 128 144
Mixed particles
containing:
NoCl B 14 9 28 22 21 15
CuX 2 1 . 1(: . 1
FeOx.nHo0 . . & ; 11 8
Total 2 9 22 14 40 31 33 23

The characteristics of CCN on other planets are totally unknown.
Dust particles will serve as CCN on Mars.
Galactic cosmic rays may also work. Cosmic rays increase small ions (charged molecules
or charged small clusters of molecules) in the atmosphere, leading to increase in the

nucleation rate of aerosol particles.
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Catling & Kasting (2017)

The solid curves are the typical
vertical profiles of pressure
versus temperature. Dashed
curves are the saturation vapor
pressure curves for various
condensables.

Particles condense when the
partial pressure reaches the
saturation vapor pressure.
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H,SO, clouds of Venus
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Fig. 2. Comparison between the observed temperature structure
of Venus’ lower atmosphere and that of several models, which are de-  Pollack et al. (1980)
scribed in the main text.

Extinction profiles as retrieved from Tomasko et al. (1980)
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Fig. 19. The total (0.325-4.6 um) upward, downward, and net flux
profiles near the Venera 11 and 12 entry sites (05 = 19.3°).
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Polarization of sunlight reflected by Venus

Hansen & Hovenier (1974)
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Microphysical properties of Venus clouds

« H,S0,-H,0 droplets with radii r < 5 um
Smallest mode (including sub-cloud haze) might be condensation nuclei

whose composition is unknown.
» Size distribution is variable.
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Three-layered structure of Venusian clouds
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Three-layered structure of Venusian clouds

static stability measured
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by radio occultation
(Imamura et al. 2017)
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H,SO, vapor in Venusian atmosphere

Measurement by radio occultation

Altitude (km)

0 2 4 8 8 10 12
H,S50 vapor mixing ratio (ppm )

Imamura et al. (2017)
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Fig. 9. Zooally and time-averaped sulfurk acid vapor distribation i the Venus lower atmosphere at all lagimides berween the years 2006 and 2014 (lower pasel). The
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Oschlisniok et al. (2021)

Sulfur-rich atmosphere: origin of H,SO,

SO, measurements by Vega landers
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Figure 24. The SO, mixing ratio vertical profile retrieved for ISAV 2 (data points) is compared to that
determined for ISAV 1. There is a large difference of structure above 40 km, while the profiles are nearly
identical below 40 km. A peak of 210 ppm is observed at 43 km in the ISAV 2 data.

Bertaux et al. (1996)



Origin of clouds

(km)
70 Photochemistry above clouds
Scenario #1 (Net reaction driven by catalytic cycles
including CIOx, HOx, NOx)
2CO, +hy — 2C0O0 + 0O,
CO +S0,+0,+hyv — CO, + SO,
60 CO,+ S0, +hv — CO + SO,
Scenario #2
SO, +hy— SO0 +0
SO+hy—S+0
50 S0, + 0 — S0, (x2)
3S0O,+hy — S+ 2S0,
* SO; rapidly reacts with H,0:| SO; + H,0 — H,SO,
40
Elemental sulfur (S) can serve as condensation nuclei.
Origin of clouds
(km)
70

H,SO, vapor and H,O vapor condenses onto

/‘ condensation nuclei.

Growth of particles via collision during gravitational

60 A sedimentation

Evaporation around 50 km altitude due to high
temperature

50 Thermochemistry below clouds (Net reaction
driven by catalytic cycles
H,SO, — H,0 + SO,
SO; + CO — CO, + SO,
SO, + OCS — CO, + (S0), etc
40

H,SO, + 4CO — H,0 + 3CO, + OCS




-

Intensity (Erg sec” cm® ster' um™')

100
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Sedimentation of particles

Stokes velocity for a spherical particle Sedimentation velocity of droplets in
gpd? Venusian atmosphere

w = (Imamura & Hashimoto 1998)
sed 18
N MEAN SEDIMENTATION VELOCITY (103 m s=')
g : gravitational acceleration 2y -0 %o o8 ¢
p : mass density of particle
e . 5 d~2um ]
d : diameter of particle
n : viscosity coefficient of air s 1
=
- ]
comparable E d~7pum -,
< sk ]
. . . 40 ]
Time constant of Hadley circulation
7 ~ 100 Earth days (from energy budget) - :
- Vertical flow velocity ~ H/z ~ 1 mm/s el B e

WEIGHT FRACTION OF MODE 3

Figure 2.  Fraction of Mode 3 particles by weight in the cload (solid curve) adopted in the
model after the observation by the Pioseer Vewss particle size spectrometer, azd the calculated
mean sedimentation vdocdity W, wed (dashed curve). The clowd mass is assumed to be composed
of particles of fixed radii, Mode 2 (r = 115 jsm) and Mode 3 (r = 3.65 pm).

Possible role of planetary-scale meridional circulation
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Lifecycle of Earth’s stratospheric aerosols
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FiG. 9. Extinction ratios from the SAGE 11 satellite system in
various latitude ranges. The extinction values were measured in April
1989 in the Southern Hemisphere. We have removed extinction ratios
greater than 7 at lower altitudes for these are indications of
tropospheric clouds.

Equatorial dark clouds might be
produced by large-scale upwelling
near the cloud base




SO, SO, profiles above cloud observed by Venus Express solar
occultations (Belyaev et al. 2011)
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+ Enhancement at high altitudes cannot be explained by traditional
photochemical models.

Chemical model of Venusian stratosphere (Zhang et al. 2012)
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Transport of cloud particles to the
upper atmosphere by winds ?
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Fig. 8. Same as Fig. 2, for the sulfur oxides. The SO; and SO observations with
errorbars are from the Belyaev et al. (2012). The temperature at 100 km is 165~
170K for the observations. The OCS measurement (0.3-9 ppb with the mean value
of 3 ppb) is from Krasnopolsky (2010).



S0,(283 nm) Unknown absorber (365 nm)

Venus is completely covered by clouds that are featureless
in the visible but exhibit variable ultraviolet features.

Origin of visible-UV absorption

* Absorbing material at far UV (<320nm) is mostly SO,

- Absorption at near UV (>320nm) is a mystery. Candidate species are
S, $,0,, S,0, FeCl,, etc.
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Figure 6~1. The Monochromatic Bond Albedo of Venus as a
Function of Wavelength (Moroz, 1983 -
Normalized to the Integrated Albedo A =
0.76). The points show the wavelength
dependence of the maximum contrast between
dark and light UV features (Coffeen, 1977).



Sulfur cycle in Venus’s atmosphere

Aerosol
.
- .
.

aerosols/clouds

condensation
nuclei ?

S-reservoir

Zhang et al. (2012)

Variability of SO, above clouds
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Figure 3 | More than thirty years of SO, measurements at Venus's cloud
top. Black stands for previously published measurements?®. Red stands for
the 8-month moving average of the retrievals also shown in Fig. 1. Solid red
error bars represent lo random uncertainty, and dotted red error bars
represent measurement dispersion in each temporal bin.



