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Milankovitch cycles on Mars and Earth

Table 12.10 The orbital elements of Mars and the Earth and their variability.

Martian variability Terrestrial variability
Parameter Present Mars  Range  Cycle (years) Present Earth  Range Cycle (years)
Obliquity (%) 25.19 0-85* 120 000** 23.45 22-24 41 000
Eccentricity 0.093 0-0.12 120 000*** 0.017 0.01-0.04 100 000
Longitude of perihelion (°) 250 0-360 51 000 285 0-360 21 000

* Before ~10 Ma, obliquity variations are chaotic. While unpredictable at an exact time, statistically they would have varied between
0 and 85" (Laskar ef al., 2004; Touma and Wisdom, 1993).

** The amplitude of obliquity oscillation is modulated with a ~1.2 Myr period envelope.

*** The amplitude of eccentricity oscillation is modulated with a ~2.4 Myr period envelope.

Catling & Kasting 2017
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Glacial inception by CO, emission

Ganopolski et al. 2016, Nature

* Interglacials occur during periods of high summer insolation in the high
latitudes of the Northern Hemisphere. (Milankovitch theory)

* In the past, a decrease in Northern Hemisphere insolation to below its
present-day level always led to the end of interglacials and rapid growth
of continental ice sheets.

* However, at present, although summer insolation at 65°N is close to its
minimum, there is no evidence for the beginning of a new ice age.

* Glacial inceptions have occurred in the past under similar orbital
configurations.

MIS19: BOO 780 6l

* The current interglacial would have ended

if the CO, concentration had stayed at a TiOEE

level of about 240 parts per million (ppm), ¢ ORELE

as was the case at the end of MIS19 (800 | |

kyr BP). However, during the late Holocene P

(et : IR E D) before the beginning ¢ =

of the industrial era, the CO, concentration

was about 280 ppm, leading to escape o

from glacial inception. N
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* It has been proposed that pre-industrial L5 ERA

land-use at least partly contributed to the
high Holocene CO, level, but the
magnitude of this contribution is very
uncertain.
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Future ?
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Figure 4 | The next glacial inception. The top panel shows the temporal
evolution of the maximum summer insolation at 65° N. The middle panel
shows the simulated CO; concentration during the next 100,000 years

for different cumulative CO; emission scenarios: 0 Gt C anthropogenic
emissions (blue), 500 Gt C (orange), 1,000 Gt C (red) and 1,500 Gt C (dark
red line). The bottom panel shows simulated ice volume corresponding to
the different CO, emission scenarios. Individual simulations are shown
for the 1,500 Gt C scenario; for the other scenarios, the range is given as
shading.
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* For a total of 1,000 Gt carbon

cumulative emissions, which is only
double the present-day value, the
probability of glacial inception
during the next 100,000 years is
notably reduced, and under
cumulative emissions of 1,500 Gt C,
glacial inception is very unlikely
within the entire 100,000 years.

Cumulative carbon emission will
exceed 1,000 Gt in the twenty-first
century, suggesting that
anthropogenic interference will
make the initiation of the next ice
age impossible.




recurrent slope lineae

* transition between different climate
regimes ?

Subsurface ice
Mars Odyssey

Neutron Spectrometer (NS) and High-Energy Neutron Detector (HEND)
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Schorghofer and Aharonson (2005) Comparison with models

Near equilibrium at high latitudes ?

B KIHPDKEREDFHEINE
RELTHESNDKEKEETODRS

EiR: PHEFLARANISREFLS
nr-kK&gf=

T - - =11 e .'..-- o=
3 NN N N N N N W SN R N N N . . . .
180" 12 0" o L 18 180

g 20 o & 0 100 120 140
Dweth ta loe Tables {glem®

Figury 8, Color mdicates dopth 5o the ics whk m g em™ when o is i oquilibraem with the
atmospheric water vapor. Ciround ice is unstable in the white arca. Black seproents indicase finte barial
depeis lagger than 130 g om . Missing daia points are shoun in gray. Assumed volume fuction of ice is
475, but the geographic boundary betwees iy and ice-foe soil i indepedent of B ice fraction, Sold
cotiours indicate watmr-cquivabend Bydugen fonlod in poenst deterrmed ey noution yectscngy
|Feidman o al, 204] The dotiod hines ave 200 1 s K" " conteurs of thermal inertia

Permanent CO, cap at the South pole

FL\EIAIZCo,k FHULETAITH,09K

BEBINDOHIERE
CO21B7E D — &

Fgure 1 Giobal maps of CO; and H.0 £a3 at 1ha soul pole of Mers. Left, 18 C0-ke that the H,0-iC8 areas extend far beyond the CO,
absorption feature s scaed from bive deeg) 1o brown (00, -ce-See areasi; right, soled uets ters of idometres wide
mapping of 1e 1,0 ice, rom bive (deep abeorpion) 10 red foe-rea). Companson Sows

Bibring et al. (2004)

COZHFBREDE M T THHE »
HZOjk:E)ﬁE 75\ Fig. 8. Three year changes in unit B. Registered clips from MOC image £11.01220

superposed on HIRISE image PSP_004744_0870. Note that the three year change
includes one or two ndges intenor to the present depression edge, Rlumination in
MOC images from upper left, in HIRISE mare from the Jeft, MOC [, = 286°, HIRISE
I, = 287" Scale bar S0 m, Centered at BE9™S, B9.4°W.



Milankovitch cycles on Mars and Earth

Table 12.10 The orbital elements of Mars and the Earth and their vanability.

Martian variability Terrestrial variability
Parameter Present Mars  Range  Cycle (years) Present Earth  Range Cycle (years)
Obliguity (%) 25.19 0-85* 120 000** 23.45 22-24 41 000
Eccentricity 0.093 0-0.12 120 000*** 0.017 0.01-0.04 100 000
Longitude of perihelion (°) 250 0-360 51 000 285 0-360 21 000

* Before ~10 Ma, obliquity variations are chaotic. While unpredictable at an exact time, statistically they would have varied between
0 and 85 (Laskar ef al., 2004; Touma and Wisdom, 1993).

** The amplitude of obliquity oscillation is modulated with a ~1.2 Myr period envelope.

*** The amplitude of eccentricity oscillation is modulated with a ~2.4 Myr period envelope.

Catling & Kasting 2017

Milankovitch cycles on Mars
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* low obliquity = cold pole - massive polar cap - dry atmosphere
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Figure 3. Mean annual surface temperature for a range of obliquities. The eccentricity is 0,12, and the L at which

penhekon occurs is 270, coresponding to southern summer. A thermal inertia of 250 Jm™
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curve are due 1o the effects of seasonal CO; frost
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Buried glaciers
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Formation of glaciers on Mars by atmospheric precipitation at
high obliquity Forget et al. (2006)

* The model predicts ice accumulation in regions where glacier landforms are observed,
on the western flanks of the great volcanoes and in the eastern Hellas region
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Seasons of Mars

Ls = sprlng equinox of the northern hemisphere
' Ls =270
/ 1.66 AU <.> 19
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Mars « North Polar Cap
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Water transport by Hadley circulation

Warmer southern summer than northern favors
net northward transport of water.
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Seasonal variation of dust, clouds, and H,O vapor observed by an
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Figure 5. A comparison of water ice accumulation rates predicted by the model in the south polar
region for the two perihelion configurations. Present-day map shows net accumulation only at the south
pole itself (equivalent to 1 grid point in the model) where the prescription of a CO, cold trap forces a
local and permanent deposition of water ice. In the reversed perihelion simulation (Figure 5, right), the
CO; cold trap has been removed and the pattern of accumulation is only controlled by a precipitation

infrared spectrometer (TES) on Mars Global Surveyor
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Supersaturation of water vapor on Mars
SPICAM on Mars Express (Maltagliati et al. 2011)
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Vertical distribution of water vapor on Mars during the course of a Mars year
Shaposhnikov et al. (2019)

Annual water cycle. MY28
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H,SO, clouds of Venus
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Fig. 2. Comparison between the observed temperature structure
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top. Black stands for previously published measurements?®. Red stands for
the 8-month moving average of the retrievals also shown in Fig. 1. Solid red
error bars represent lo random uncertainty, and dotted red error bars
represent measurement dispersion in each temporal bin.



Correlation between UV contrast and

SO, density ? (Lee et al. 2015)
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long-term variation of zonal wind in deep clouds (Peralta
et al. 2018)
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Radiative relaxation time

* Times cale of infrared cooling/solar heating

* The meridional overturning time is usually considered to be
similar to the radiative relaxation time.

* Radiative relaxation time is longer for larger atmospheric heat
capacities.
* Mars : 3 Earth days
 Earth : 100 Earth days

* Venus : 50 Earth years

* The dynamical time scale of Venus’s atmosphere can also be
very long -2 Internal oscillation ?

Observations of exoplanets’ atmospheres

exoplanets.org | 10¥24/2018
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d0i:10.1038/nature23266

Evans et al. (2017, Nature)

An ultrahot gas-giant exoplanet with a stratosphere

Thomas M. Evans', David K. Sing', Tiffany Kataria?, Jayesh Goyal', Nikolay Nikolov', Hannah R. Wakeford®, Drake Deming?,
Mark S. Marley®, David S. Amundsen®’, Gilda E. Ballester®, Joanna K. Barstow?, Lotfi Ben-Jaffel'?, Vincent Bourrier',

Lars A. Buchhave'?, Ofer Cohen'?, David Ehrenreich", Antonio Garcia Mufioz', Gregory W. Henry'3, Heather Knutson'®,
Panayotis Lavvas', Alain Lecavelier des Etangs'®, Nikole K. Lewis'®, Mercedes Lopez - Morales'®, Avi M. Mandell’,

Jorge Sanz-Forcada®, Pascal Tremblin® & Roxana Lupu®

* secondary eclipse of WASP-121b on 10 November 2016 using the Hubble Space
Telescope (HST) Wide Field Camera 3 (WFC3)

* If upper layers are cooler than lower layers, molecular gases will produce absorption
features in the planetary thermal spectrum. Conversely, if there is a stratosphere—
where temperature increases with altitude—these molecular features will be
observed in emission

* near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an
equilibrium temperature of approximately 2,500 kelvin

* Water is resolved in emission, providing a detection of an exoplanet stratosphere

Secondary
wclipse
e g
N J
Tranwit Lammer et al. (2013)
e o
== E
E af -
) i, |
E B -
E i 0E L i L L _-! (f
g- 2| Li 12 13 14 15 18 A
ﬁ ' h‘-‘/;/“\/
R i
=
[ | m— L s 4 i s s i i o 0 a s b issisliisiidnilacl
SN B I B S B S U e B e O B R WA N AEREARRLRS LA —E:
n-b WASP-121b retrigval — £
- tsothermal (2, 700K g
7": 25 - —
£ WA dhwari 2
o 20 =71 ** Y L1 chwart ,,, s
= | 3
AN ] )
05 L - , =)
[ i | T T T N Lok o |aa.:ljﬁ'.“.l“-.nu“lul
1 3 4
35 - T — —r “T —— Temperature (K)
€ WY — [ Ta— Figure 3 | Temperature-pressure profiles for WASP-121b. a, Grey lines
30+ r " — - = show a random subset of T=P profiles sampled by the MCMC retrieval
| + analysis. Red line shows the median temperature at each pressure level,
‘g 25 ] ~+, - 1 and pink lines show ranges either side encompassing +34% of the sampled
2] L ~, 1 rofiles. Yellow line indicates the best-fit isothermal temperature of
z * i + P F
s I [~
e 20 I ﬁ,{ 1} * \E_H_\T =
% ' W\ H‘{I\t
E el
e 3 ’
10 = =1
o5 L | 1 | | 1 _
11 12 1.3 14 1.5 1.6

Wavalangth (jum)



A&A 577, A62 (2015) Astronomy

DOL: 10.1051/0004-6361/201525729

© ESO 2018 ASthphySics

Spectrally resolved detection of sodium in the atmosphere
of HD 189733b with the HARPS spectrograph*

A. Wyttenbach, D. Ehrenreich, C. Lovis, S. Udry, and F. Pepe

* high-resolution transit spectrum of HD 189733b in the region around the
resonance doublet of Na | at 589 nm

* HARPS spectrograph (R = 115 000) at the ESO 3.6-m telescope
* blueshift corresponding to winds blowing at 8 &= 2 km s™!
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Clouds in the atmosphere of the super-Earth
exoplanet GJ 1214b Kreidberg et al. (2014, Nature)

Laura Kreidberg', Jacob L. l':c'.m’. Jean -Michel | Msert™ Bjorn Benneke®, Drake Deming®, Kevin B. Stevenson', Sara Seager®,
Zachory Berta- Thompson®™”, Andreas Seifahrt’ & Derek Homeier®

* Transmission spectroscopy using Hubble Space Telescope

*  We rule out cloud-free atmospheric models with compositions dominated by
water, methane, carbon monoxide, nitrogen or carbon dioxide

e The planet’ s atmosphere must contain clouds
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A map of the day-night contrast of the extrasolar planet HD
189733b (Knutson et al. 2007)

A minimum brightness temperature of 973 +/- 33 K and a maximum brightness
temperature of 1212 +/- 11 K at a wavelength of 8 microns, indicating that
energy from the irradiated dayside is efficiently redistributed throughout the

atmosphere
Observed phase variation for HD 189733b, with Brightness estimates for 12 longitudinal
transit and secondary eclipse visible. strips on the surface of the planet
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SPATIALLY RESOLVED EASTWARD WINDS AND ROTATION OF HD 189733b

Tom LOUDEN AND PETER J. WHEATLEY
Department of Physics, University of Warwick, Coventry CV4 TAL, UK; tm louden @ warwick ac.uk
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* wind velocities on opposite sides of the hot Jupiter HD 189733b by
modeling sodium absorption in high-resolution transmission spectra from
the High Accuracy Radial Velocity Planet Searcher
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* astrong eastward motion of the atmosphere of HD H‘VW : \};?1 o

189733b, with a redshift of 2.3 km s~ on the
leading limb of the planet and a blueshift of 5.3 km m;
s on the trailing limb
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