Atmospheric chemistry and aerosols

Composition of planetary atmospheres

Object	Mass	Carbon	Nitrogen	Oxygen	Argon	Methane	Sodium	Hydrogen	Helium	Other
	(kilograms)	Dioxide								
Sun	3.0x10 ³⁰							71%	26%	3%
Mercury	1000			42%			22%	22%	6%	8%
Venus	4.8x10 ²⁰	96%	4%							
Earth	1.4x10 ²¹		78%	21%	1%					<1%
Moon	100,000				70%		1%		29%	
Mars	2.5x10 ¹⁶	95%	2.7%		1.6%					0.7%
Jupiter	1.9x10 ²⁷							89.8%	10.2%	
Saturn	5.4x10 ²⁶							96.3%	3.2%	0.5%
Titan	9.1x10 ¹⁸		97%			2%				1%
Uranus	8.6x10 ²⁵					2.3%		82.5%	15.2%	
Neptune	1.0x10 ²⁶					1.0%		80%	19%	
Pluto	1.3x10 ¹⁴	8%	90%			2%				
								fro		Цр

from NASA HF

photosynthesis

 $6 \ \mathrm{CO}_2 + 6\mathrm{H}_2\mathrm{O} + \mathrm{energy} \longrightarrow \mathrm{C}_6\mathrm{H}_{12}\mathrm{O}_6 + 6 \ \mathrm{O}_2$

Need for understanding chemistry

Chemical kinetics

A reaction between reactants A and B to form product C:

 $A + B \rightarrow C$ reaction rate = k [A] [B] $A + B + M \rightarrow C + M$ reaction rate = k [A] [B] [M]

M is any inert molecule that can remove the excess energy.

k is the reaction rate constant that usually depends on the temperature as (Arrhenius equation):

$$k = A \exp \left(- rac{E_{
m a}}{k_{
m B}T}
ight)$$

where E_a is the activation energy.

Chapman theory

 $O_{2} + hv \rightarrow 2O$ $O + O_{2} + M \rightarrow O_{3} + M$ $3O_{2} \rightarrow 2O_{3}$ $O_{3} + hv \rightarrow O + O_{2}$ $O + O_{3} \rightarrow 2O_{2}$ $2O_{3} \rightarrow 3O_{2}$

- Chapman theory predicts an ozone amount of several times larger than the observations.
- Other loss mechanisms are required.

Figure 3.1 An ozone profile calculated with the Chapman reactions at the equator overestimates the ozone compared with observations over Panama at 9° N on November 13, 1970. The reason is that natural catalysts that destroy ozone are omitted from the oxygen-only Chapman reactions. (Adapted from Seinfeld and Pandis (1998). Reproduced with permission. Copyright 1998, John Wiley and Sons.)

Catling & Kasting (2017)

Catalytic cycles

$$X + O_3 \rightarrow XO + O_2$$

$$XO + O \rightarrow X + O_2$$

$$0 + O_3 \rightarrow 2O_2$$

X : Free radical such as OH, NO, Cl, Br

The net result of the catalytic cycle is to remove O and O_3 rapidly.

Stability of CO₂ atmosphere

$$2(CO_2 + hv \rightarrow CO + O)$$
$$O + O + M \rightarrow O_2 + M$$

Net: $2CO_2 \rightarrow 2CO + O_2$

The reaction CO + O \rightarrow CO₂ is very slow (spin forbidden). Mars and Venus atmospheres are expected to be converted to CO and O₂ in 6000 years.

Catalytic cycle on Mars ?

On Mars, OH radicals are thought to play crucial roles.

$$H_2O + hv \rightarrow OH + H$$

McElroy and Donahue [1972]

Parkinson and Hunten [1972]

Production of OH

 $H+O_2+M \rightarrow HO_2+M$ $HO_2+O \rightarrow OH + O_2$

Production of OH $2(H+O_2+M \rightarrow HO_2+M)$ $HO_2 + HO_2 \rightarrow H_2O_2 + O_2$ $H_2O_2 + hv \rightarrow OH + OH$

Production of CO₂

 $CO + OH \rightarrow CO_2 + H$,

Production of CO₂

Net reaction

Net reaction

 $CO+O+M \rightarrow CO_2+M$.

 $2CO + O_2 \rightarrow 2CO_2$.

 $2(CO + OH \rightarrow CO_2 + H),$

Atreya and Gu (1994)

Figure 8. Distribution of key constituents based on the nominal model (H₂O = 150 ppm, $K = 10^6 \text{ cm}^2 \text{s}^{-1}$, $\tau_d = 0.4$; see text).

Photochemistry is effective even near the surface on Mars because of the thin atmosphere.

Catalytic cycle on Venus?

Cl radicals are thought to play crucial roles.

$$\begin{array}{cccc} Cl + CO + M \rightarrow \overrightarrow{ClCO} + M & (27) \\ ClCO + O \rightarrow CO_2 + Cl & (28) \end{array} & \begin{array}{cccc} Cl + CO + M \rightarrow \overrightarrow{ClCO} + M & (27) \\ ClO + O \rightarrow CO_2 + Cl & (28) \end{array} & \begin{array}{ccccc} Cl + CO + M \rightarrow \overrightarrow{ClCO} + M & (29) \\ ClCO + O_2 + M \rightarrow \overrightarrow{ClCO} + M & (29) \\ ClO + O \rightarrow Cl + O_2 & (26) \end{array} & \begin{array}{ccccc} Cl + CO + M \rightarrow \overrightarrow{ClCO} + M & (29) \\ ClO + O \rightarrow Cl + O_2 & (26) \end{array} & \begin{array}{cccccc} Net: CO + O \rightarrow CO_2 & (G1) \end{array} & \begin{array}{cccccccc} Cl + CO + M \rightarrow \overrightarrow{ClCO} + M & (27) \\ ClCO + O_2 + M \rightarrow \overrightarrow{ClCO} + M & (27) & Cl + CO + M \rightarrow \overrightarrow{ClCO} + M & (27) \\ ClCO + O_2 + M \rightarrow \overrightarrow{ClCO} + M & (29) & ClCO + O_2 + M \rightarrow \overrightarrow{ClCO} + M & (29) \\ ClCO + O_2 + M \rightarrow \overrightarrow{ClCO} + O_2 + Cl & (31) & ClCO + M \rightarrow \overrightarrow{ClCO} + M & (29) \\ ClCO + O \rightarrow CO_2 + O_2 + Cl & (31) & ClCO + O \rightarrow CO_2 + ClO & (32) \\ ClO + O \rightarrow Cl + O_2 & (62) & \overrightarrow{Net: CO + O \rightarrow CO_2} & (63) \end{array}$$

Mills et al. (2007)

Figure 3. Schematic showing primary pathways for production of CO_2 via chlorine chemistry. The reaction $CICO + O \rightarrow CO_2 + CI$ accounts for 15 and 20% of the column total CO_2 production in the $+0.5\sigma$ and $+2.0\sigma$ models from Table 5, respectively.

CICO, $CICO_3$ and other key species have never been observed.

Clouds/aerosols

Cloud formation

Role of soluble cloud condensation nuclei (CCN)

The Köhler curve (solid) for the relative humidity $RH = e/e_s$ over a spherical droplet of water containing solute, as a function of droplet radius a, at 5 °C. The solute is taken to be 10^{-19} kg of NaCl. The Kelvin factor is given by the dotted curve and the Raoult factor is given by the dash-dotted curve. The thick horizontal dashed line and points A and B are discussed in the text.

Composition of CCN

Example of the composition of ice forming nuclei in Earth's troposphere (Pruppacher & Klett 1997)

TABLE 9.6 Composition of ice forming nuclei derived from aerosolized soil in Montana (from Rosinski et al., 1981).

			,					
Chemical composition	Aerosol number	particles %	Ice-formi -12° number	ng nuc C %	lei active a —15° number	t temp C %	erature -20° number	° %
Clay minerals: montmorillonite feldspar illite miscellaneous Organic particles Number of particles: analyzed	194 287 163 27 139 810	24 36 20 3 17	28 74 37 8 7 154	$^{18}_{48}_{24}_{5}_{5}$	17 41 39 19 12 128	$^{13}_{32}_{31}_{15}_{9}$	41 54 28 10 11 144	28 38 19 7 8
Mixed particles containing: NaCl CuX Fe0 _x .nH ₂ 0 Total	7 2 - 9	,	$ \begin{array}{c} 14 \\ 1 \\ 7 \\ 22 \end{array} $	9 5 14	28 0 12 40	22 9 31	$21 \\ 1 \\ 11 \\ 33$	15 8 23

- The characteristics of CCN on other planets are totally unknown.
- Dust particles will serve as CCN on Mars.
- Galactic cosmic rays may also work. Cosmic rays increase small ions (charged molecules or charged small clusters of molecules) in the atmosphere, leading to increase in the nucleation rate of aerosol particles.

Catling & Kasting (2017)

The solid curves are the typical vertical profiles of pressure versus temperature. Dashed curves are the saturation vapor pressure curves for various condensables.

Particles condense when the partial pressure reaches the saturation vapor pressure.

- Solar energy flux reaching the Venus surface (17W/m²) is much less than that of the Earth (168W/m²).
- Greenhouse effect of massive CO₂ and small amount of H₂O explains the high temperature.

Fig. 2. Comparison between the observed temperature structure of Venus' lower atmosphere and that of several models, which are described in the main text.

Pollack et al. (1980)

-9 - V 0 20

Effective radius ~ 1 μ m

60 80 100 120 140 160 180

40

Microphysical properties of Venus clouds

- H₂SO₄-H₂O droplets with radii r < 5 μm
- Smallest mode (including sub-cloud haze) might be condensation nuclei whose composition is unknown.
- Size distribution is variable.

H₂SO₄ vapor in Venusian atmosphere

Fig. 9. Zenally and time-averaged sulfuric acid vapor distribution in the Verus lower atmosphere at all latitudes between the years 2006 and 2014 (lower panel). The headspheres were subdivided into equal latitudinal bins of S^* each and H₂SO₄(g) profiles located within each bin were averaged to one mean profile. The number of data samples used for averaging is shown in the upper panel. The white dashed line in the lower panel shows the isotherm at T = 340 K derived from Vela X-band radio occutation data from the sume period, but when are generally as high as their uncertainties. Below the isotherm the values are higher than their uncertainties. Below the isotherm the values are higher than their uncertainties. The lack of measurements at northerm mid-latitudes between 20° and 60° is a consequence of the VEX orbit geometry.

Oschlisniok et al. (2021)

Sulfur-rich atmosphere: origin of H₂SO₄

Figure 24. The SO₂ mixing ratio vertical profile retrieved for ISAV 2 (data points) is compared to that determined for ISAV 1. There is a large difference of structure above 40 km, while the profiles are nearly identical below 40 km. A peak of 210 ppm is observed at 43 km in the ISAV 2 data.

Bertaux et al. (1996)

Origin of clouds

Origin of clouds

Pollack et al., Icarus 103, 1, 1993

Sedimentation of particles

Possible role of planetary-scale meridional circulation

Schubert (1983)

Imamura & Hashimoto (2001)

Lifecycle of Earth's stratospheric aerosols

extinction ratio

FIG. 9. Extinction ratios from the SAGE II satellite system in various latitude ranges. The extinction values were measured in April 1989 in the Southern Hemisphere. We have removed extinction ratios greater than 7 at lower altitudes for these are indications of tropospheric clouds.

Observed cloud morphology

Peralta et al. (2018)

Equatorial dark clouds might be produced by large-scale upwelling near the cloud base

 Enhancement at high altitudes cannot be explained by traditional photochemical models.

Chemical model of Venusian stratosphere (Zhang et al. 2012)

Artificial H₂SO₄ source added above 90 km:

Transport of cloud particles to the upper atmosphere by winds ? \rightarrow Open question

Fig. 8. Same as Fig. 2, for the sulfur oxides. The SO_2 and SO observations with errorbars are from the Belyaev et al. (2012). The temperature at 100 km is 165–170 K for the observations. The OCS measurement (0.3–9 ppb with the mean value of 3 ppb) is from Krasnopolsky (2010).

SO₂(283 nm)

Unknown absorber (365 nm)

Venus is completely covered by clouds that are featureless in the visible but exhibit variable ultraviolet features.

Origin of visible-UV absorption

- Absorbing material at far UV (<320nm) is mostly SO₂
- Absorption at near UV (>320nm) is a mystery. Candidate species are S, S₂O₂, S₂O, FeCl₂, etc.

Moroz et al. (1985)

Figure 6-1. The Monochromatic Bond Albedo of Venus as a Function of Wavelength (Moroz, 1983 -Normalized to the Integrated Albedo A = 0.76). The points show the wavelength dependence of the maximum contrast between dark and light UV features (Coffeen, 1977).

Sulfur cycle in Venus's atmosphere

Zhang et al. (2012)

Dust in the Martian atmosphere

Martian dust storms span the entire planet, in June 2018. The image was taken from the NASA's rover *Curiosity*

Dust in the Martian atmosphere

- Micrometer-sized small mineral particles float in the atmosphere with a background optical thickness of 0.1-0.5.
- The dust loading changes with time and space.
- The dust serves as a heat source in the atmosphere by absorbing sunlight.

Seasonal variation of optical thickness in infrared (Smith et al. 2004)

Fig. 7. Globally-averaged daytime (local time ~ 1400) dust optical depth at 1075 cm⁻¹ (scaled to an equivalent 6.1-mbar pressure surface) as a function of season (L_s). Three martian years are represented: Mars Year 24 (MY 24) (**I**), MY 25 (**I**), MY 26 (×). During the planet-encircling dust storm of 2001 (MY 25), globally-averaged dust opacity reached 1.3 at $L_s = 205-215^{\circ}$.

Seasons of Mars Ls = 0 : spring equinox of the northern hemisphere Ls = 90 Ls = 90Ls = 180

- 火星は公転軌道の離心率が大きいため 季節変化が著しく南北非対称
- 南半球の夏に太陽までの距離が近くなる

Dust as a heat source

- Absorption of solar radiation
 - much stronger than the greenhouse effect of CO₂, which is only several kelvins
 - much stronger than cloud albedo effect and latent heat

Dust storms on Mars

regional storm

Dust devils

 Source of background atmospheric dust ?

"Rocket dust storm" Modeling by Spiga et al. (2013)

Dust plumes continuously get buoyancy through solar heating

Figure 12. The LMD-MMM storm simulation with lifting and no initial dust perturbation. Same as Figure 4 except that local times range from 0800 to 1800 and longitude-altitude sections are obtained at latitude 1.5°S.

H₂O ice clouds on Mars

HST Mars image

color composite

blue (410 nm)

Seasonal variation of dust, clouds, and H₂O vapor observed by an infrared spectrometer (TES) on Mars Global Surveyor

Seasonal cycle of Martian water

- 北極冠の消長が全体を駆動
- 北半球の春~夏に北極冠が昇華して北極域の水蒸気濃度が上昇、これが(この時期の弱い)水平渦で低緯度に拡散的に運ばれる。
- 低緯度に運ばれた水蒸気の一部は赤道越えのハドレー循環で南半球へ
- 北半球の秋~冬には北極冠で 凝結により水蒸気濃度が低下 し、南北濃度勾配が逆転する ため、傾圧不安定などに伴う水 平渦で低緯度から北極域に水 蒸気が拡散的に戻る。低緯度 の水蒸気量はそれまでの水蒸 気輸送の履歴で決まる。

Figure 3. Chart describing the principal events affecting the Martian water cycle over the course of a year. NPCS stands for North Polar Cap Sublimation; SCR stands for Seasonal Cap Recession.

Water transport by Hadley circulation

 Warmer southern summer than northern favors net northward transport of water.

Montmessin et al. (2004)

Fig. 2. Selection of typical water vapor volume-mixing ratio profiles in the (A) northern and (B) southern hemisphere. Black curve, modeled profile by the LMD-GCM; red curve, the retrieved SPICAM results; blue curve, saturation water vapor-mixing ratio. Supersaturation exists where the red values are greater than the blue ones.

Fig. 3. Saturation ratio for all orbits of the campaign. (A) Northern hemisphere. (B) Southern hemisphere. The vertical line marks the value of 1, which corresponds to the saturated state.

Dependence of volatile escape on lower atmosphere processes

Meridional distribution of zonal-mean temperature obtained by MGS/TES (Smith et al. 2001)

Meridional cross sections in Mars GCM (Shaposhnikov et al. 2019)

Traditional scheme

New concept

Martian Moons eXploration (MMX) JAXA's next-generation sample return mission

- Launch in 2024
- Phobos & Deimos:
 - Remote sensing & in situ observation (Phobos)
 - Retrieve samples (>10 g) from Phobos & return to Earth in 2029
- Mars: Remote sensing mainly from the Phobos orbit
- First sample return mission from the Martian system

Instruments for Mars atmosphere observation

OROCHI

- Wide-angle camera, 8 colors
- 3 colors (480, 650, 950 nm) will be used for Mars observation.
- 2.5 km/pix (sub S/C) from QSO
- TENGOO
 - Narrow-angle camera
 - 35 m/pix (sub S/C) from QSO
- MIRS
 - Push-bloom type spectrometer
 - Spectral resolution: 10nm
 - Spectral bandpass: 0.9–3.6 μm
 - 2.1 km/pix (sub S/C) from QSO

Kameda et al. (2021)

Barucci et al. (2021)

Continuous global monitoring from Martian orbit

Chemistry of gas giants

Many of the gases observed in their atmospheres are hydrides, which are thermodynamically stable forms in the H₂-rich atmospheres (e.g., CH_4 , NH_3 , H_2O , H_2S , PH_3 , GeH_4 , and AsH_3).

These gases (except H_2O and H_2S) are photochemically destroyed by solar UV in the stratosphere to produce disequilibrium species (e.g., C_2H_6 , C_2H_2 , C_2H_4 , N_2H_4).

The disequilibrium species react with H_2 to reform hydrides once they are transported downward into the hot, high pressure regions.

Lodders,	2010
,	

Gas	Jupitera	Saturn	Uranus	Neptune
H ₂	86.4 ± 0.3%	88 ± 2%	$\sim\!\!82.5\pm3.3\%$	~80 ± 3.2 %
⁴ He	$13.6 \pm 0.3\%$	$12 \pm 2\%$	15.2 ± 3.3 %	19.0 ± 3.2 %
CH ₄	$(1.81 \pm 0.34) \times 10^{-3}$	$(4.7 \pm 0.2) \times 10^{-3}$	~2.3 %	~1-2 %
NH ₃	$(6.1 \pm 2.8) \times 10^{-4}$	$(1.6 \pm 1.1) \times 10^{-4}$	<100 ppb	<600 ppb
H ₂ O	520 ⁺³⁴⁰ ₋₂₄₀ ppm	2-20 ppb		
H ₂ S	67 ± 4 ppm	<0.4 ppm	<0.8 ppm	<3 ppm
HD	45 ± 12 ppm	$110 \pm 58 \text{ ppm}$	~148 ppm	~192 ppm
13CH4	19 ± 1 ppm	51±2 ppm		
C ₂ H ₆	5.8 ± 1.5 ppm	7.0 ± 1.5 ppm		
PH ₃	1.1 ± 0.4 ppm	4.5 ± 1.4 ppm		
CH ₃ D	$0.20 \pm 0.04 \text{ ppm}$	$0.30 \pm 0.02 \text{ ppm}$	~8.3 ppm	~12 ppm
C ₂ H ₂	$0.11 \pm 0.03 \text{ ppm}$	$0.30\pm0.10~\text{ppm}$	~10 ppb	60 ⁺¹⁴⁰ ₋₄₀ ppb
HCN	60 ± 10 ppb	<4 ppb	<15 ppb	$0.3 \pm 0.15 \text{ ppb}$
HC ₃ N			<0.8 ppb	<0.4 ppb
C ₂ H ₄	$7 \pm 3 \text{ ppb}$	~0.2 ppb ^b		
CO2	5-35 ppb	0.3 ppb	40 ± 5 ppt	
C ₂ H ₆			10 ± 1 ppb	1.5 ^{+2.5} _{-0.5} ppm
CH ₃ C ₂ H	2.5 ⁺² ₋₁ ppb	0.6 ppb	$0.25\pm0.03\ ppb$	
СО	$1.6 \pm 0.3 \text{ ppb}$	$1.4 \pm 0.7 \text{ ppb}$	<40 ppb	0.65 ± 0.35 ppm
CH ₃ CN				<5 ppb
GeH ₄	0.7 ^{+0.4} _{-0.2} ppb	$0.4 \pm 0.4 \text{ ppb}$		
C ₄ H ₂	$0.3 \pm 0.2 \text{ ppb}$	0.09 ppb	$0.16\pm0.02~\text{ppb}$	
AsH ₃	0.22 ± 0.11 ppb	$2.1 \pm 1.3 \text{ ppb}$		

Cycle of hydrogen-bearing species on giant planets

Clouds

Sanchez-Lavega et al.

Galileo probe (entry: December 7, 1995)

©NASA

Dry atmosphere ?

- Brightness of the sky abruptly drops off at a pressure level of 0.6 bars, indicating an ammonia cloud layer above this height. Clouds were *not* seen below.
- Clouds are patchy and that the Probe went through a relatively clear area.

- The atmosphere has much less oxygen than the Sun's atmosphere, implying a surprisingly dry atmosphere.
- Oxygen was expected to be enriched relative to the solar value due to impacts by comets and other small bodies over the 4.5 billion years.

©NASA

The probe apparently entered a special location

The Probe entry site is near the edge of a so-called infrared "**hot spot**". These "hot spots" are believed to represent regions of diminished clouds on Jupiter.

Orton et al. 1998

Atmospheric chemistry on Titan

Atmospheric composition of Titan (Coustenis 2007)

Constituent	Mole Fraction (atm. altitude level)
Major	
Molecular nitrogen, N2	0.98
Methane, CH ₄	4.9×10^{-2} (surface)
	$1.4-1.6 \times 10^{-2}$ (stratosphere)
Monodeuterated methane, CH3D	6×10^{-6} (in CH_3D, in stratosphere.)
Argon, ^{36Ar}	2.8×10^{-7}
40 _Å r	4.3×10^{-5}
Minor	
Hydrogen, H ₂	~0.0011
Ethane, C2H6	$1.5 \times 10^{-5} (\text{around} \; 130 \; \text{km})$
Propane, C3H8	$5\times10^{-7}(around\;125\;km)$
Acetylene, C ₂ H ₂	$4\times10^{-6}(around\;140\;km)$
Ethylene, C2H4	$1.5\times10^{-7}(\text{around}\;130\;\text{km})$
Methylacetylene, CH3C2H	$6.5\times10^{-9}(\text{around }110\text{ km})^{\text{e}}$
Diacetylene, C ₆ H ₂	$1.3\times 10^{-9}(\text{around 110 km})^{\rm o}$
Cyanogen, C2N2	$5.5\times10^{-9}(\text{around}\;120\;\text{km})^{0}$
Hydrogen cyanide, HCN	$1.0\times10^{-7}(\textrm{around}\;120\;\textrm{km})^{\rm c}$
	$5\times10^{-7}(around~200~km)^{b}$
	$5\times10^{-6}(around~500~{\rm km})^{b}$
Cyanoacetylene, HC3N	$1\times 10^{-9}(\text{around}\ 120\ \text{km})^{\rm s}$
	$1\times 10^{-7}({\rm around}~{\rm 500~km})^{b}$
Acetonitrile, CHyCN	$1\times 10^{-8}~(\text{around}~200~\text{km})^{c}$
	$1\times 10^{-7}(\text{around 500 km})$
Water, H ₂ O	$8 \times 10^{-9} (at 400 \text{ km})^d$
Carbon monoxide, CO	4×10^{-5} (uniform profile) ^r
Coloradavida CO2	1. C 100 (Comment 1200 (m))

Catling & Kasting (2017)

© NASA

Cassini's Visual and Infrared Mapping Spectrometer (VIMS)