Planetary climate systems

Inner edge of habitable zone

- Runaway greenhouse limit
 Complete evaporation of ocean
- Water loss limit

Escape of water/hydrogen to space

 \rightarrow How/when did **Venus** lose water and get the thick CO₂ atmosphere ?

Outer edge of habitable zone

- Greenhouse effect by CO₂ and other gases
- Enhancement of cloud albedo in cold, massive atmospheres
- \rightarrow How/when did **Mars** lose thick atmosphere and freeze ?

Runaway greenhouse effect

Figure 13.7 Diagram illustrating the positive feedback loop caused by water vapor.

Catling & Kasting (2017)

- An increase in surface temperature causes an increase in atmospheric water vapor, which then increases the greenhouse effect, causing a further increase in surface temperature. (Positive feedback)
- A wet atmosphere makes spectral atmospheric windows close up, and thermal infrared radiation cannot escape to cool the planet. If the absorbed solar flux exceeds the outgoing infrared limit, the surface water totally evaporates and the planet's surface heats up.

Runaway/moist greenhouse of early Venus

Albedo = 0.22 is assumed

FIG. 6. Temperature versus pressure for selected runaway greenhouse atmospheres. The lower portions of the curves represent dry adiabats. The curve(s) to which they are all joined are moist pseudoadiabats, which are very nearly equivalent to the saturation vapor pressure curve for water.

Kasting 1988; Catling & Kasting 2017

Atmospheric structure in moist greenhouse (Kasting 1988)

High H₂O mixing ratio in the upper atmosphere
→ Rapid hydrogen escape

Figure 13.13 Vertical profiles of temperature (a) and water vapor mixing ratio (b) for atmospheres with different surface temperatures, T_s . A 1-bar N₂/O₂ background atmosphere is assumed. (From Kasting, (1988). Reproduced with permission from Elsevier. Copyright 1988.)

STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE (Yang et al. 2014, ApJ)

- Atmospheric circulation affects the albedo
- subsolar-to-antisolar circulation on slow rotators can generate thick clouds on the illuminated
 side

subsolar-to-antisolar circulation (Y. Matsuda)

"Was Venus the first habitable world of our solar system?" Way et al. (2016)

- Global mean surface air temperature of 11°C despite an incident solar flux at Venus's orbit ~46% higher than that received by modern Earth
- This is the result of this world's slow rotation which generates a strong circulation with rising motion and accompanying high thick clouds on the dayside that reflect a substantial fraction of the incident sunlight.

Cloudiness

Surface level winds

Rotation period >> Radiative time constant

(Earth : 100 Earth days)

Subsolar-to-antisolar circulation

(松田 2000)

Rotation period << Radiative time constant

(Venus : 50 Earth years)

Axi-symmetric circulation

Ancient Martian climate: clue to the outer edge of the habitable zone

Valley network distribution (Ramirez & Craddock 2018)

Can the ancient Mars be warm with CO₂ greenhouse effect ? Kasting (1991)

- The ancient Sun was 25% dimmer than the present
- CO₂ greenhouse has been expected to warm the ancient Mars
- Warm lower atmosphere causes convection, which induces condensation of CO₂ in the upper atmosphere. The associated latent heating raises the temperature at upper levels, and at the same time cools the lower atmosphere so that the net energy balance is maintained.

 \rightarrow When the solar constant is less than 86% of the present value, the surface temperature cannot exceed 273 K.

Forget & Pierrehumbert (1997)

- CO₂ ice clouds scatter infrared radiation emitted from the surface, thereby causing greenhouse effect.
- CO₂ ice clouds also have cooling effect via increase of the planetary albedo. However, thick CO₂ atmosphere itself has a high albedo even when no cloud exists, and thus the effect of cloud albedo is relatively minor.
 - For example, cloud-free 2-bar CO_2 atmosphere has an albedo of 0.38. Addition of CO_2 clouds increases the albedo to 0.65, thereby reducing the solar absorption by 40%. At the same time the clouds absorbs 60% of the infrared radiation emitted from the surface.

Fig. 2. Calculated mean temperature profiles for a 2-bar CO₂ atmosphere, assuming a 25% reduced solar luminosity corresponding to the early Mars conditions. The effect of the cloud from Fig. 1 ($\tau = 10, r = 10 \,\mu$ m) is shown in the cases of a wet (fully saturated troposphere; dashed curves) and a dry (solid curves) atmosphere. The dotted curve shows the CO₂ condensation temperature profile.

3D modelling of the early Martian climate under a denser CO₂ atmosphere: Temperatures and CO₂ ice clouds (Forget et al. 2013)

- 3D global climate simulations of the early martian climate performed assuming a faint young Sun and a CO₂ atmosphere with surface pressure between 0.1 and 7 bars
- Previous studies had suggested that CO₂ ice clouds could have warmed the planet thanks to their scattering greenhouse effect. However, even assuming parameters that maximize this effect, it does not exceed +15 K. As a result, a CO₂ atmosphere could not have raised the annual mean temperature above 0° C anywhere on the planet.
- This is consistent with a cold early Mars scenario in which nonclimatic mechanisms must occur to explain the evidence for liquid water.

Mean surface temperature vs. Surface pressure (column CO₂ amount)

- Surface temperature increases up to 2 bar. Above 2–3 bar, Rayleigh scattering by CO₂ gas more than compensates for the increased thermal infrared opacity of the atmosphere. Increasing the atmospheric thickness does not result in an increase of the mean surface temperature.
- Taking into account the radiative effect of CO₂ ice clouds results in a global warming of the surface by more than 10 K resulting from the CO₂ ice cloud scattering greenhouse effect.
- The collapse of the atmosphere into permanent CO₂ ice caps is predicted for pressures higher than 3 bar.

Fig. 1. Global mean annual mean surface temperature (K) as a function of surface pressure in our baseline simulations (obliquity = 25° , [CCN] = 10^{5} kg⁻¹, circular orbit) with and without radiatively active CO₂ ice clouds.

An example of the instantaneous CO₂ ice clouds coverage for a mean surface pressure 2 bar

- CO₂ ice clouds cover a major part of the planet but not all. Their behavior is controlled by a combination of large scale ascents and descents of air, stationary and travelling waves, and resolved gravity waves related to the topography.
- The mean cloud warming remains lower than 15 K because of the partial cloud coverage and the limited cloud optical depth.

Collision-induced absorption (CIA) band of H₂ caused by the foreign-broadening by the background CO₂ atmosphere

Reduced mantle conditions could have favored enhanced outgassing of H_2 over long timescales. Hydrogen is continuously replenished by volcanism that offsets losses to space.

An atmosphere containing -4 bar of CO_2 and 5% H₂ would have brought Mars' average surface temperature up to the freezing point of water.

Steffen et al. (PNAS, 2018)

Milankovitch cycles on Mars and Earth

Table 12.10 The orbital elements of Mars and the Earth and their variability.

Parameter	Present Mars	Martian variability			Terrestrial variability	
		Range	Cycle (years)	Present Earth	Range	Cycle (years)
Obliquity (°)	25.19	0-85*	120 000**	23.45	22-24	41 000
Eccentricity	0.093	0-0.12	120 000***	0.017	0.01-0.04	100 000
Longitude of perihelion (°)	250	0-360	51 000	285	0-360	21 000

* Before ~10 Ma, obliquity variations are chaotic. While unpredictable at an exact time, statistically they would have varied between 0 and 85° (Laskar *et al.*, 2004; Touma and Wisdom, 1993).

** The amplitude of obliquity oscillation is modulated with a ~1.2 Myr period envelope.

*** The amplitude of eccentricity oscillation is modulated with a ~2.4 Myr period envelope.

Catling & Kasting 2017

Milankovitch cycles on Mars

Laskar et al. (2002)

- low obliquity → cold pole → massive polar cap → dry atmosphere
 → retreat of ice sheet
- high obliquity → warm pole → thin polar cap → moist atmosphere
 → growth of ice sheet, ice accumulation in the tropics

Figure 3. Mean annual surface temperature for a range of obliquities. The eccentricity is 0.12, and the L_S at which perihelion occurs is 270, corresponding to southern summer. A thermal inertia of 250 J m⁻² s^{-1/2} K⁻¹, an albedo of 0.25, a surface pressure of 600 Pa, and an infrared dust opacity of 0.1 are assumed. Discontinuities in the slope of each curve are due to the effects of seasonal CO₂ frost.

Mellon & Phillips (2001)

recurrent slope lineae

transition between different climate regimes ?

Buried glaciers

Formation of glaciers on Mars by atmospheric precipitation at high obliquity Forget et al. (2006)

• The model predicts ice accumulation in regions where glacier landforms are observed, on the western flanks of the great volcanoes and in the eastern Hellas region

Venus: Massive eruptions several hundred million years ago ?

Radar image of Venus surface by NASA's Magellan spacecraft

Wrinkle ridges may have been formed by thermal stress caused by a sporadic enhancement of greenhouse effect (H_2O) in the past. (Bullock and Grinspoon, 2001)

Decadal variation of Venusian atmosphere

Figure 3 | More than thirty years of SO₂ measurements at Venus's cloud top. Black stands for previously published measurements²⁶. Red stands for the 8-month moving average of the retrievals also shown in Fig. 1. Solid red error bars represent 1 σ random uncertainty, and dotted red error bars represent measurement dispersion in each temporal bin.

UV albedo (Lee et al. 2019)

(b) y0292_006

Correlation between UV contrast and SO₂ density (Lee et al. 2015)

(a) V1412_0000

long-term variation of zonal wind (Khatuntsev et al. 2022)

Long-term variation of the Venus atmosphere revealed by Akatsuki cameras

Watanabe (2023, master's thesis) 60 °N 30 °N 0°N -30 °N -60 °N $[\frac{1}{2}]^{\frac{1}{2}}[\frac{1}{2}]^{$ **Poleward velocity** 111111111111 IIII HI th 極向き速度 Cloud top the state temperature 雲頂温度 0.0 283 nm albedo (SO₂) 0.00 -0.0 0.05 365 nm albedo -0.050 365 nmアルペド Thermal tide 熱潮汐波 Var (equator) time scales of venus years were Venus Year discovered.

Understanding the diversity in a multi-dimensional parameter space

Giant exoplanet with a hot upper atmosphere (Evans et al. 2017)

- Secondary eclipse of WASP-121b using the HST Wide Field Camera 3 (WFC3)
- If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere where temperature increases with altitude—these molecular features will be observed in emission.

Figure 3 | Temperature-pressure profiles for WASP-121b. a, Grey lines show a random subset of T-P profiles sampled by the MCMC retrieval analysis. Red line shows the median temperature at each pressure level, and pink lines show ranges either side encompassing $\pm 34\%$ of the sampled profiles. Yellow line indicates the best-fit isothermal temperature of

Meadows et al. (2018) ASTROBIOLOGY, Vol 18

FIG. 6. Transit transmission spectra of potential planetary environments with dif-ferent O_2 abundances for planet orbiting the ferent O_2 abundances for planet orbiting the M5.5V star Proxima Centauri (Meadows *et al.*, 2018). Illustrating spectral features that can help distinguish photosynthetic from abiotically generated O_2 in a planetary atmosphere. From top to bottom: self-consistent Earth-like atmosphere with 50% claud express (2016) O to the express for the provided of the pr cloud cover (21% O_2); 10 bar abiotic O_2 (95% O_2) atmosphere produced by early ocean loss with ocean remaining (purple) and desiccated (orange); 1 bar desiccated CO2/CO/O2 atmosphere that has reached a kinetic-photochemical equilibrium between the photolysis rate of CO_2 and kinetics-limited recombination (15% O_2). Effective atmospheric radius in kilometers is on the left y axes and transit depth is shown on the right y axes. The photosynthetic source for O2 in the Earth-like case is made more likely by the presence of O_2/O_3 , water, and meth-ane. High O_2 cases with and without water are distinguished by the presence of O_4 , and the behavior of the 0.5–0.7 µm Chappuis band that is sensitive to tropospheric O3, which is more abundant in the desiccated case. The desiccated chemical equilibrium atmosphere is easily distinguished by its high levels of CO.

