Planetary climate systems |

Diagrams depicting the habitable zone around the Sun and Gliese 581
(Selsis et al. 2007)
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Inner edge of habitable zone

* Runaway greenhouse limit

Complete evaporation of ocean

Water loss limit

Escape of water/hydrogen to space

- How/when did Venus lose water and get the thick CO, atmosphere ?

Outer edge of habitable zone

* Greenhouse effect by CO, and other gases

* Enhancement of cloud albedo in cold, massive atmospheres

- How/when did Mars lose thick atmosphere and freeze ?

Runaway greenhouse effect
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Figure 13.7 Diagram ilustrating the positive feedback loop caused
by water vapor.

Catling & Kasting (2017)

An increase in surface temperature
causes an increase in atmospheric
water vapor, which then increases the
greenhouse effect, causing a further
increase in surface temperature.
(Positive feedback)

More precisely, a wet atmosphere
makes spectral atmospheric windows
close up, and thermal infrared radiation
cannot escape to cool the planet. If the
absorbed solar flux exceeds the
outgoing infrared limit, the surface
water totally evaporates and the
planet’s surface heats up.



Surface temperature (K)

.

.

Runaway/moist greenhouse of early Venus

800 T T T T T T T T v
]-» Rapid I—» Runaway greenhouse
600 hydrogen -~
- sl o 3 102
s~ 1 §
200 41 8
10
000 g
102 § £
s 2
00 7 $ g
600 J104 g
£
400 - 10
200 | Pres:;m Earth Venus Vem;s 4
ol PR PRV DT SR R N 102
8 1.0 1.2 14 1.6 1.8 20

Solar constant relative to present Earth

Albedo = 0.22 is assumed

TEMPERATURE, K

Fi1G. 6. Temperature versus pressure for sclected
runaway greenhouse atmospheres. The lower portions
of the curves represent dry adiabats. The curve(s) to
which they are all joined are moist pseudoadiabats,
which are very nearly equivalent to the saturation va-
por pressurc curve for water.

Kasting 1988; Catling & Kasting 2017

Atmospheric structure in moist

greenhouse
(Kasting 1988)

High H,O mixing ratio in the upper
atmosphere
- Rapid hydrogen escape
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Figure 13.13 Vertical profiles of temperature (a) and water vapor
mixing ratio (b) for atmospheres with different surface tempera-
tures, T, A 1-bar N2/O, background atmosphere is assumed.
(From Kasting, (1988). Reproduced with permission from Elsevier.
Copynght 1988.)



Earth’s CO, cycle (carbon cycle)

* CO, dissolves in the ocean and buried in the crust.
* CO, buffer may have stabilized the Earth’s climate.

The Carbonate - Silicate Cycle
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Fig. 5. A schematic representation of chemical weathering reactions of terrestrial continental
silicate rocks by CO, dissolved in water, the subduction of the resultant carbonate rocks, their

thermal decomposition at depth. and the outgassing of the released CO,.
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STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON
PLANETARY ROTATION RATE (Yang et al. 2014, ApJ)
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“Was Venus the first habitable world of our solar system?“
Way et al. (2016)

(Sim A) Solar flux: 1.46 x Earth, Rot. period: Modern Venus
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Conditions for superrotation

v’ Slow planetary rotation

* On slow-rotating planets, atmospheric waves
caused by planetary-scale dynamical instabilities
unknown in Earth's meteorology lead to an
acceleration of the atmosphere.

(When the planet rotates rapidly, atmospheric
waves accelerate the atmosphere at high
latitudes like the Earth)

v’ Long radiative relaxation time

* A dense atmosphere has a large heat capacity
and a longer relaxation time. The vertical
circulation slows down, making it difficult to
smooth out the velocity change with altitude and
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Carbonate buffer hypothesis

The observed surface condition coincides with the CO, equilibrium partial
pressure over the calcite—quartz—wollastonite assemblage. (Urey 1952)

CaCO3 + S|Oz = CaS|O3 + C02

(calcite) (quartz)  (wollastonite)

e &
2 by 100
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s € (Stabilization?)
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O When volcanism increases atmospheric CO,,
O N L .

& carbonate formation is enhanced due to the increases

I 0 I S in CO, pressure, leading to the removal of CO,.

660 680 700 7[:;) 740760 (Destabilization?)
Temperature An increase in CO, leads to an increase in temperature

via the greenhouse effect, which enhances carbonate
(IFLB&- P, 1998) decomposition. The positive feedback destabilizes the
system. (Hashimoto et al. 1997)




Stabilization of Venus’ climate by a chemical-albedo feedback

(Hashimoto & Abe, 2000)

The atmospheric SO, abundance might be controlled by the equilibria with
the pyrite-magnetite assemblage.

3 FeS, + 16 CO,(gas) = Fe3;0, + 6 SO,(gas) + 16 CO(gas)
(pyrite) (magnetite)

[R7A~F - AEGA | A decrease in surface temperature removes
- : some atmospheric SO,. This reduces the
photochemical production of H,SO, clouds,

EEU LR

i > P KL e wy o b R
SO1+0+HIO = HiISO«* | HSODR
! ! ; ¢ L X

e o Rl e leading to a decrease in the cloud albedo and
SO, a resultant increase in the temperature. This
) negative feedback stabilizes the system.
(Hashimoto & Abe, 2000)
Fes04 + 6502 + 16 CO F 0Sq .
= 3FeS: + 16 COz ~ )
Z

(IELB&-FAIER. 1998)

Ancient Martian climate: clue to the outer
edge of the habitable zone




Table 1 Martian isotope ratios and atmospheric loss*

Isotope ratio Measured valuet Amount lost to space (%)1

D/H ....................................... EE A ST e e D
38Ar/36Ar ............................... e S
130/‘2(: .................................. S e —— - i
‘5N/“N .................................. R e S e
180/160 ................................. e e

*Values taken from refs 57-59, 62, 77 and 78, and references therein.

tValue estimated, observed or derived for martian atmosphere relative to terrestrial.
iCalculated assuming Rayleigh fractionation. D/H range includes uncertainty in escape
processes. Other ranges are based on uncertain timing of outgassing relative to escape.

Jakosky & Phillips (2001)

Subsurface water on Mars

Mars Odyssey Neutron Spectrometer (NS) and High-Energy Neutron Detector (HEND)

Global Distribution of Water on Mars
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Three possibilities

The greenhouse effect was bigger in the past because of a thicker
atmosphere that contained higher concentrations of greenhouse gases.

The fluvial features were caused by many temporary warm episodes
associated with impacts. The energy released from impacts would have

heated the surface of early Mars, vaporized ice into steam, and produced
rainfall that eroded river valleys.

The fluvial features were produced in a rather cold environment. Fluvial
erosion might be produced in response to fortuitous combinations of
orbital parameters, allowing localized snowmelt. Brines can exist as liquids
at temperatures below 273 K.

(Catling and Kasting 2017)

Possible evolution of Martian climate

Chassefiere et al. (2007)
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Fig. 3. Schematic chronology of atmospheric escape on Mars. A factor of
100 loss is expected to have occurred during the heavy bombardment
period, by impact loss and possibly hydrodynamic escape. In the
subsequent period, by using radiogenic argon as a tracer of sputtering
escape, an additional loss by a typical factor of 10 occurred.



Long-term trend of solar luminosity
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Theoretical models for the stellar interior show that the luminosity
of the Sun had to change over time, with the young Sun being
considerably less luminous than today.

Can the ancient Mars be warm with CO, greenhouse effect ?
Kasting (1991)

» The ancient Sun was 25% dimmer than the present
» CO, greenhouse has been expected to warm the ancient Mars

« Warm lower atmosphere causes convection, which induces
condensation of CO, in the upper atmosphere. The associated
latent heating raises the temperature at upper levels, and at the
same time cools the lower atmosphere so that the net energy
balance is maintained.



Effect of CO, condensation
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surface temperature cannot exceed 273 K.

CO, ice clouds traveling above the Mars
Curiosity rover on December 12th, 2021
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Greenhouse effect due to CO, ice clouds

Forget & Pierrehumbert (1997)

* CO, ice clouds scatter infrared radiation emitted from the surface,
thereby causing greenhouse effect.

* CO, ice clouds also have cooling effect via increase of the
planetary albedo. However, thick CO, atmosphere itself has a
high albedo even when no cloud exists, and thus the effect of
cloud albedo is relatively minor.

— For example, cloud-free 2-bar CO, atmosphere has an albedo
of 0.38. Addition of CO, clouds increases the albedo to 0.65,
thereby reducing the solar absorption by 40%. At the same
time the clouds absorbs 60% of the infrared radiation emitted
from the surface.
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Fig. 2. Calculated mean temperature profiles for a
2-bar CO, atmosphere, assuming a 25% reduced
solar luminosity corresponding to the early Mars
conditions. The effect of the cloud from Fig. 1 (v =
10, r = 10 pm) is shown in the cases of a wet (fully
saturated troposphere; dashed curves) and a dry
(solid curves) atmosphere. The dotted curve
shows the CO, condensation temperature profile.



3D modelling of the early Martian climate under a denser CO,

atmosphere: Temperatures and CO, ice clouds
(Forget et al. 2013)

* 3D global climate simulations of the early martian climate performed
assuming a faint young Sun and a CO, atmosphere with surface pressure

between 0.1 and 7 bars

* Previous studies had suggested that CO, ice clouds could have warmed the
planet thanks to their scattering greenhouse effect. However, even
assuming parameters that maximize this effect, it does not exceed +15 K.
As a result, a CO, atmosphere could not have raised the annual mean
temperature above 0° C anywhere on the planet.

* This is consistent with a cold early Mars scenario in which nonclimatic
mechanisms must occur to explain the evidence for liquid water.

Mean surface temperature
vs. Surface pressure (column CO, amount)

Surface temperature increases up to 2 bar.
Above 2- 3 bar, bar Rayleigh scattering by
CO, gas more than compensates for the
increased thermal infrared opacity of the
atmosphere. Increasing the atmospheric
thickness does not result in an increase of
the mean surface temperature.

Taking into account the radiative effect of
CO, ice clouds results in a global warming of
the surface by more than 10 K resulting from
the CO, ice cloud scattering greenhouse
effect.

The collapse of the atmosphere into
permanent CO, ice caps is predicted for
pressures higher than 3 bar.
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Fig. 1. Global mean annual mean surface temperature (K) as a function of surface

pressure in our baseline simulations (obliquity = 25°, [CCN] = 10° kg ', circular
orbit) with and without radiatively active CO; ice clouds.



Surface temperature

for present-day ground albedo of 0.22 for ice-covered ground albedo of 0.4

Ps=2 bars
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—-- =

=) ] ] [] o [F il
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Annual mean surface temperatures are always significantly below 0° C.

An example of the instantaneous CO, ice clouds coverage
for a mean surface pressure 2 bar

%80

* CO, ice clouds cover a major part of the planet but not all. Their behavior is
controlled by a combination of large scale ascents and descents of air,
stationary and travelling waves, and resolved gravity waves related to the
topography.

* The mean cloud warming remains lower than 15 K because of the partial
cloud coverage and the limited cloud optical depth.



Other greenhouse gases?

*  Ammonia (NH;) : 500 ppm of NH; in a 4-5 bar CO, atmosphere could raise
surface temperatures to 273 K. However, NH; is photochemically unstable and

would require shielding to survive.

Methane (CH,) : even at concentrations of 500 ppm CH, does not significantly

boost the greenhouse effect of a pure CO,/H,0 atmosphere. CH, would require
strong sources to sustain the above concentrations.

* Sulfur dioxide (SO,) & hydrogen sulfide (H,S) : An obvious source for these
gases is volcanic activity. SO, needs to build up to concentrations around the
10 ppm level or higher. SO, readily converts to aerosols, and these aerosols
should have a net cooling effect on surface temperatures. Furthermore, SO, is
highly soluble and will washout quickly when conditions become warm enough

for rainfall.

(Forget et al. 2013)

H,—CO, greenhouse ?
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(Ramirez et al. 2014)

Collision-induced absorption band of H,
caused by the foreign-broadening by the
background CO, atmosphere

Reduced mantle conditions could have
favored enhanced outgassing of H, over
long timescales. Hydrogen is continuously
replenished by volcanism that offsets
losses to space.

An atmosphere containing -4 bar of CO,
and 5% H, would have brought Mars’
average surface temperature up to the
freezing point of water.



(Ramirez & Kaltenegger 2017)

Outer edge of the habitable zone
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Figure 1. Effective stellar temperature vs. incident stellar flux (S.y) for the
outer edge. The CO> maximum greenhouse limit (dashed) is shown along with
the empirical outer edge (solid black) and outer edge limits containing 5%,
10%, 20%, 30%, and 50% H, (red solid).

The model atmospheres contain 1 bar of N,, H, with concentrations of
1%, 5%, 10%, 20%, 30% and 50%, and CO, with the saturation partial
pressure at 273 K.

Diagrams depicting the habitable zone around the Sun and Gliese 581
(Selsis et al. 2007)
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