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Milankovitch cycles on Mars and Earth

Table 12.10 The orbital elements of Mars and the Earth and their variability.

Martian variability Terrestrial variability
Parameter Present Mars  Range  Cycle (years) Present Earth  Range Cycle (years)
Obliquity (%) 25.19 0-85* 120 000** 23.45 22-24 41 000
Eccentricity 0.093 0-0.12 120 000*** 0.017 0.01-0.04 100 000
Longitude of perihelion (°) 250 0-360 51000 285 0-360 21 000

* Before ~10 Ma, obliquity variations are chaotic. While unpredictable at an exact time, statistically they would have varied between
0 and 85" (Laskar er al., 2004; Touma and Wisdom, 1993).

** The amplitude of obliquity oscillation is modulated with a ~1.2 Myr period envelope.

*** The amplitude of eccentricity oscillation is modulated with a ~2.4 Myr period envelope.

Catling & Kasting 2017
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Glacial inception by CO, emission

Ganopolski et al. 2016, Nature

* Interglacials occur during periods of high summer insolation in the high
latitudes of the Northern Hemisphere. (Milankovitch theory)

* In the past, a decrease in Northern Hemisphere insolation to below its
present-day level always led to the end of interglacials and rapid growth
of continental ice sheets.

* However, at present, although summer insolation at 65°N is close to its
minimum, there is no evidence for the beginning of a new ice age.

* Glacial inceptions have occurred in the past under similar orbital
configurations.

MIS19: BOO 780 760

* The current interglacial would have ended

if the CO, concentration had stayed at a TiOEE
level of about 240 parts per million (ppm), ¢ ORELE
as was the case at the end of MIS19 (800
kyr BP). However, during the late Holocene ;
(SeFr i @ I/ E D) before the beginning & oo =
of the industrial era, the CO, concentration e
was about 280 ppm, leading to escape
from glacial inception. N, -
* It has been proposed that pre-industrial | 3 1|;ﬁ§§ﬁ
land-use at least partly contributed to the il
high Holocene CO, level.
* If carbon emission continues, glacial present
inception is very unlikely within the next
100,000 years. Anthropogenic interference COERLE

CO, pp.m)

will make the initiation of the next ice age
impossible. v

Figure 1 | Orbital parnmeters, Comparison of Earth's orbltal parameters
i MISt9
(black). The vertical dashed line day for MiISI
and the minima of the precessional component of insolation for MISII
and MIS19
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Subsurface ice
Mars Odyssey

Neutron Spectrometer (NS) and High-Energy Neutron Detector (HEND)
Global Distribution of Water on Mars

Northern-Latitude Water Abundance Water Abundance (weight percent)
(poleward of 45 ') 19294 080 789 W™
e N IO =

Water by weight (percent)
SEAS8388

Southern-Latitude Water Abundance Topography, Elevation (km)
(poleward of -45) 4 € 4 3 8 \ 3 8 ¥ Wou
S Ea.

S USEEBERN
Lattuode

Water by weight (percent)

-

[l
.

4ﬁ%ﬂmm

Schorghofer and Aharonson (2005) Comparison with models

Near equilibrium at high latitudes ?

B KI[HBPDKETED FHINE
RELTHHESNDKEKETODRS

e e e i ammmea' EE OREIAREANLEHLS

180" -1200 600 o 607 12 180
— Teeeeesss—m @ NKEEE
a 20 &0 (1] a0 10a 12 140
Deespith b boe Table {plem™

Figurs 8 Colr mdicates dopth %0 the ice sblk m g em™ when o i o oquilbomms widh the
almdpheric wasker vapor Ciround ioe i wnstsble in she white ares. Black seprwnis indicase firse barial
depeits larger than 130 g am . Missing dais poinis are shoun in geay. Assimed volume fecton of ice is
HP%, but the progsaphic bousdary betwees sy and e-live sil i indepemdont of e oo faction. Sobd
eufmury indicale walcr-oquivalent Bydeopen conten in percen detersmed Boes noution peckuscopy
|Feidman o al, 204] The dotiod hines ave 200 1 s K" " conteurs of thermal inertia



Milankovitch cycles on Mars and Earth

Table 12.10 The orbital elements of Mars and the Earth and their vanability.

Martian variability Terrestrial variability
Parameter Present Mars  Range  Cycle (years) Present Earth  Range Cycle (years)
Obliguity (%) 25.19 0-85* 120 000** 23.45 22-24 41 000
Eccentricity 0.093 0-0.12 120 000*** 0.017 0.01-0.04 100 000
Longitude of perihelion (°) 250 0-360 51 000 285 0-360 21 000

* Before ~10 Ma, obliquity variations are chaotic. While unpredictable at an exact time, statistically they would have varied between
0 and 85 (Laskar ef al., 2004; Touma and Wisdom, 1993).

** The amplitude of obliquity oscillation is modulated with a ~1.2 Myr period envelope.

*** The amplitude of eccentricity oscillation is modulated with a ~2.4 Myr period envelope.

Catling & Kasting 2017

Milankovitch cycles on Mars
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Seasons of Mars

Ls = () spring equinox of the northern hemisphere
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Mars « North Polar Cap
Hubble Space Telescope « WFPC2

Kieffer and Zent (Kieffer et al. eds, Univ. Arizona Press, 1992)
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* low obliquity = cold pole - massive polar cap - dry atmosphere 2>
retreat of ice sheet

* high obliquity - warm pole - thin polar cap - moist atmosphere ->
growth of ice sheet, ice accumulation in the tropics
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Figure 3.  Mean annual surface temperature for a range of obliquities, The eccentricity is 0.12, and the Lg at which
penhelion occurs is 270, comesponding to southern summer. A thermal inertia of 250 Jm 7 s~ ' K™, an albedo of
0.25, a surface pressure of 600 Pa, and an infrared dust opacity of 0.1 are assumed. Discontinuities in the slope of cach
curve are due 10 the effects of seasonal CO, frost.
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Formation of glaciers on Mars by atmospheric precipitation at
high obliquity Forget et al. (2006)

* The model predicts ice accumulation in regions where glacier landforms are observed,
on the western flanks of the great volcanoes and in the eastern Hellas region
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Buried glaciers
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Water transport by Hadley circulation

Warmer southern summer than northern favors
net northward transport of water.

Distribution of H,O in a Mars GCM
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Seasonal variation of dust, clouds, and H,O vapor observed by an
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Figure 5. A comparison of water ice accumulation rates predicted by the model in the south polar
region for the two perihelion configurations. Present-day map shows net accumulation only at the south
pole itself (equivalent to 1 grid point in the model) where the prescription of a CO, cold trap forces a
local and permanent deposition of water ice. In the reversed perihelion simulation (Figure 5, right), the
CO; cold trap has been removed and the pattern of accumulation is only controlled by a precipitation

infrared spectrometer (TES) on Mars Global Surveyor
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Supersaturation of water vapor on Mars
SPICAM on Mars Express (Maltagliati et al. 2011)
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Global dust storm

Mars » Global Dust Storm

June 26, 2001

—
September 4, 2001

Hubble Space Telescope * WFPC2
NASA, J. Bell (Cornell), M. Wolff (SSI), and the Hubble Heritage Team (STScl/AURA) * STScl-PRC01-31

Global dust storms tend to occur in southern spring-summer
Positive feedback between dust heating and the intensification of
winds is expected in the development of global dust storms.



Episodic occurrence of major dust storms
- irregular nature of Martian meteorology
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Fig. 7. Timeline of the detection of regional and planet-encircling obscurations, clouds and
storms. These events are listed in Table 111, Earth dates are indicated at the top, and perihelion
{and thus Mars vears) at the bottom of the dust-storm timeline. The second timeline indicates
periods of photographic coverage of Mars, defined in terms of the percentage of L, degrees
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third timeline indicates the apparent size of Mars, as seen from Earth, on a scale of 0w 30
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H,SO, clouds of Venus
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Fig. 2. Comparison between the observed temperature structure
of Venus' lower atmosphere and that of several models, which are de- Pollack et al. (1980)
scribed in the main text.
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Origin of clouds

Photochemistry above clouds

A including CIOx, HOx, NOx)
' 2C0, + hv — 2C0 + O,

CO +S0,+0,+hv — CO, + SO,

Scenario #2
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SO, +0 — S0, (x2)

CO,+ S0, +hv — CO + SO,

I 3S0,+hv — S + 230,

Scenario #1 (Net reaction driven by catalytic cycles

SO,
H,O
* SO; rapidly reacts with H,O:| SO; + H,0 — H,S0O,
*Elemental sulfur (S) can serve as condensation nuclei.
Variability of SO, above clouds
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Volcanic eruptions ?
Change of atmospheric dynamics ?
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Figure 3 | More than thirty years of SO, measurements at Venus's cloud
top. Black stands for previously published measurements?®. Red stands for
the 8-month moving average of the retrievals also shown in Fig. 1. Solid red
error bars represent 1o random uncertainty, and dotted red error bars

represent measurement dispersion in each temporal bin.




Correlation between UV contrast and

SO, density ? (Lee et al. 2015)
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Long-term variations of the UV albedo of Venus (Lee et al. 2019)
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long-term variation of zonal wind in deep clouds
(Peralta et al. 2018)
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Radiative relaxation time

* Times cale of infrared cooling/solar heating

* The meridional overturning time is usually considered to be
similar to the radiative relaxation time.

 Radiative relaxation time is longer for larger atmospheric heat
capacities.

* Mars : 3 Earth days
* Earth : 100 Earth days
* VVenus : 50 Earth years

* The dynamical time scale of Venus’s atmosphere can also be
very long -2 Internal oscillation ?



Spontaneous oscillation of the atmosphere

e Earth : Quasi-biennial oscillation (QBO)
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