Mars and Venus: clues to the habitable zone



Inner edge of habitable zone

e Water loss limit

Escape of water/hydrogen to spac

* Runaway greenhouse limit

NASA/JPL-Caltech

Complete evaporation of ocean

- How/when did Venus lose water and get the thick CO, atmosphere ?

Outer edge of habitable zone

* Greenhouse effect by CO, and other gases
* Enhancement of cloud albedo in cold, massive atmospheres

— How/when did Mars lose thick atmosphere and freeze ?
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Figure 13.7 Diagram illustrating the positive feedback loop caused

by water vapor.

Catling & Kasting (2017)
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An increase in surface temperature
causes an increase in atmospheric
water vapor, which then increases the
greenhouse effect, causing a further
increase in surface temperature.
(Positive feedback)

A wet atmosphere makes spectral
atmospheric windows close up, and
thermal infrared radiation cannot
escape to cool the planet. If the
absorbed solar flux exceeds the
outgoing infrared limit, the surface
water totally evaporates and the
planet’s surface heats up.

Lammer et al. (2008)



Earth’s CO, cycle (carbon cycle)

CO, dissolves in the ocean and buried in the crust.
CO, buffer may have stabilized the Earth’s climate.

The Carbonate - Silicate Cycle
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Fig. 5. A schematic representation of chemical weathering reactions of terrestrial continental
silicate rocks by CO, dissolved in water, the subduction of the resultant carbonate rocks, their
thermal decomposition at depth, and the outgassing of the released CO,.



Could ancient Venus be habitable ? (way et al. 2016)
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The dayside of the planet is almost completely cloudy, as a subsolar-to-antisolar circulation

result of this world’s slow rotation which generates a (Y. Matsuda)

strong circulation with rising motion and accompanying
high thick clouds on the dayside.



STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON
PLANETARY ROTATION RATE (Yang et al. 2014)

Rapidly Rotating (1 day) Slowly Rotating (128 days)
1365 Wim’® 1365 Wim®

* Atmospheric circulation affects
the albedo

O

o . . .
5 e subsolar-to-antisolar circulation
[4+]

g on slow rotators can generate
& thick clouds on the illuminated
£ side

Y '/

: e => & & #

: N

=

a -

&

e

subsolar-to-antisolar circulation
(Y. Matsuda)




Effect on the inner edge of the habitable zone
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Rotation period >> Radiative time constant

(Venus: 243 days) (Earth: 100 days) A
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Cloud feedback on slowly rotating planets (Turbet et al. 2021)

Initially covered with a liquid water ocean
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Gillmann et al. 2022
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Fig. 10 Current understanding of the extreme tentative scenarios for the evolution of Venus’ surface con-
ditions, from its origins to present-day, compared to Earth. On top, Venus lost its surface water early on
(desiccated Venus, or stifled outgassing scenarios), while on the bottom evolution, it evolved closer to Earth,
retaining a larger portion of its water inventory, until its climate was destabilized. For now, both evolutionary
pathways remain consistent with our global knowledge of the planet. Only general evolution trends are rep-
resented, Earth-related processes (modern plate tectonics and O, accumulation) are not attributed a specific
time and only included for comparison with Venus



Ancient Martian climate: clue to the outer
edge of the habitable zone




Table 1 Martian isotope ratios and atmospheric loss*

Isotope ratio Measured valuet Amount lost to space (%)1

D/H ....................................... G e S
38Ar/36Ar ............................... Eee
130/12(3 .................................. o
°"5K|'/"°Z|§| .................................. e b
180/160 ................................. b s

*Values taken from refs 57-59, 62, 77 and 78, and references therein.

tValue estimated, observed or derived for martian atmosphere relative to terrestrial.
ICalculated assuming Rayleigh fractionation. D/H range includes uncertainty in escape
processes. Other ranges are based on uncertain timing of outgassing relative to escape.

Jakosky & Phillips (2001)



Subsurface water on Mars

Mars Odyssey Neutron Spectrometer (NS) and High-Energy Neutron Detector (HEND)

Lower-Limit of Water Mass Fraction on Mars
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Three possibilities

 The greenhouse effect was bigger in the past because of a thicker
atmosphere that contained higher concentrations of greenhouse gases.

* The fluvial features were caused by many temporary warm episodes
associated with impacts. The energy released from impacts would have

heated the surface of early Mars, vaporized ice into steam, and produced
rainfall that eroded river valleys.

* The fluvial features were produced in a rather cold environment. Fluvial
erosion might be produced in response to fortuitous combinations of
orbital parameters, allowing localized snowmelt. Brines can exist as liquids
at temperatures below 273 K.

(Catling and Kasting 2017)



Possible evolution of Martian climate

Chassefiere et al. (2007)
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Fig. 3. Schematic chronology of atmospheric escape on Mars. A factor of
100 loss is expected to have occurred during the heavy bombardment
period, by impact loss and possibly hydrodynamic escape. In the
subsequent period, by using radiogenic argon as a tracer of sputtering
escape, an additional loss by a typical factor of 10 occurred.



Long-term trend of solar luminosity
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Theoretical models for the stellar interior show that the luminosity
of the Sun had to change over time, with the young Sun being
considerably less luminous than today.



Can the ancient Mars be warm with CO, greenhouse effect ?
Kasting (1991)

The ancient Sun was 25% dimmer than the
present

CO, greenhouse has been expected to warm
the ancient Mars

Warm lower atmosphere causes convection,
which induces condensation of CO, in the upper
atmosphere. The associated latent heating 2
raises the temperature at upper levels, and at COzlcecIou ds travellngazove
the same time cools the lower atmosphere so the Mars Curiosity rover

that the net energy balance is maintained.




1-D radiative-convective equilibrium
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Greenhouse effect due to CO, ice clouds

Forget & Pierrehumbert (1997)

CO, ice clouds scatter infrared radiation emitted from the surface,
thereby causing greenhouse effect.

CO, ice clouds also have cooling effect via increase of the
planetary albedo. However, thick CO, atmosphere itself has a
high albedo even when no cloud exists, and thus the effect of
cloud albedo is relatively minor.

— For example, cloud-free 2-bar CO, atmosphere has an albedo
of 0.38. Addition of CO, clouds increases the albedo to 0.65,
thereby reducing the solar absorption by 40%. At the same
time the clouds absorbs 60% of the infrared radiation emitted
from the surface.
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Fig. 2. Calculated mean temperature profiles for a
2-bar CO,, atmosphere, assuming a 25% reduced
solar luminosity corresponding to the early Mars
conditions. The effect of the cloud from Fig. 1 (t =
10, r = 10 wm) is shown in the cases of a wet (fully
saturated troposphere; dashed curves) and a dry
(solid curves) atmosphere. The dotted curve
shows the CO,, condensation temperature profile.



3D modelling of the early Martian climate under a denser CO,

atmosphere
(Forget et al. 2013)

* 3D global climate simulations of the early martian climate performed
assuming a faint young Sun and a CO, atmosphere with surface pressure
between 0.1 and 7 bars

* Previous studies had suggested that CO, ice clouds could have warmed the
planet thanks to their scattering greenhouse effect. However, even
assuming parameters that maximize this effect, it does not exceed +15 K.
As a result, a CO, atmosphere could not have raised the annual mean
temperature above 0°C anywhere on the planet.



Mean surface temperature
vs. Surface pressure (column CO, amount)

Surface temperature increases up to 2 bar.
Above 2- 3 bar, Rayleigh scattering by CO, 20—
gas more than compensates for the
increased thermal infrared opacity of the
atmosphere. Increasing the atmospheric
thickness does not result in an increase of
the mean surface temperature.

—— Active clouds
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Taking into account the radiative effect of
CO, ice clouds results in a warming of the
surface by more than 10 K resulting from the
CO, ice cloud scattering greenhouse effect.
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Fig. 1. Global mean annual mean surface temperature (K) as a function of surface
pressure in our baseline simulations (obliquity =25° [CCN]=10°kg !, circular
orbit) with and without radiatively active CO, ice clouds.



An instantaneous CO, ice clouds coverage for a mean
surface pressure 2 bar
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CO, ice clouds cover a major part of the planet but not all. Their behavior is
controlled by ascents and descents of air.

The mean cloud warming remains lower than 15 K because of the partial
cloud coverage and the limited cloud optical depth.



Other greenhouse gases
(Forget et al. 2013)

Ammonia (NH;) : 500 ppm of NH; in a 4-5 bar CO, atmosphere could raise
surface temperatures to 273 K. However, NH; is photochemically unstable and
would require shielding to survive.

Methane (CH,) : Even at concentrations of 500 ppm CH, does not significantly
boost the greenhouse effect of a pure CO,/H,0 atmosphere. CH, would require
strong sources to sustain the above concentrations.

Sulfur dioxide (SO,) & hydrogen sulfide (H,S) : An obvious source for these
gases is volcanic activity. SO, needs to build up to concentrations around the
10 ppm level or higher. SO, readily converts to aerosols, and these aerosols
should have a net cooling effect on surface temperatures. Furthermore, SO, is

highly soluble and will washout quickly when conditions become warm enough
for rainfall.



H,—CO, greenhouse ?
(Ramirez et al. 2014)
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Reduced mantle conditions could have
favored enhanced outgassing of H, over
long timescales. Hydrogen is continuously
replenished by volcanism that offsets
losses to space.

An atmosphere containing -4 bar of CO,
and 5% H, would have brought Mars’
average surface temperature up to the
freezing point of water.



(Ramirez & Kaltenegger 2017)

Outer edge of the habitable zone
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Figure 1. Effective stellar temperature vs. incident stellar flux (S.y) for the
outer edge. The CO, maximum greenhouse limit (dashed) is shown along with
the empirical outer edge (solid black) and outer edge limits containing 5%,
10%, 20%, 30%, and 50% H- (red solid).

The model atmospheres contain 1 bar of N,, H, with concentrations of
1%, 5%, 10%, 20%, 30% and 50%, and CO, with the saturation partial

pressure at 273 K.



