
Atmospheric dynamics I
Basic equa*ons and atmospheric waves



Clouds on planets: Origin of albedo

Cloud distribu*on reflects atmospheric dynamics

Earth
albedo 0.30 

Mars
albedo 0.16 

Venus
albedo 0.78



Latitudinal variation: Limit of one-dimensional model

3-D circulation can play crucial roles in vertical transport

Meridional distribu/on of zonal-mean 
temperature of Mars obtained by MGS/TES 
(Smith et al. 2001) 

Meridional cross sec/ons in Mars GCM  
(Shaposhnikov et al. 2019)

Summer                                                   Winter



Dependence on the rota7on rate?

Rota9on      243 days                               1 day                                           10 hours
period



Latitude

Pr
es

su
re

Fast rotation

Slow rota*on

Meridional stream 
function

white : anti-clockwise

shade : clockwise

Parameter study of the 
atmospheric circulation 
of Earth-like planets with 
general circulation 
models (GCMs)

Williams (1988)



Momentum equa+on in the iner+al coordinate system

Pressure gradient force

p0

Holton, 2004

x-component

  

 

d v 
dt

= −
1
ρ
∇p +

 g 
𝑣⃗𝑣 ：velocity
t : /me
𝜌𝜌 : atmospheric density
𝑝𝑝 : atmospheric pressure
𝑔⃗𝑔：gravity accelera/on 

Momentum equa+on 



Let us consider a frame rotating at an angular velocity Ω.
For a position vector 𝑟𝑟, the relationship between the time derivative in 
the inertial frame             and that in a rotating frame             is

Similarly

Combining these, using                                       we have

 

d d t

 

dr d t

  

 

d r 
dt

=
dr
 r 

dt
+
 
Ω ×
 r 

∴
 v =  v r +

 
Ω ×
 r 𝑣⃗𝑣 r ：velocity in rota-ng frame

  

 

d v 
dt

=
dr
 v 

dt
+
 
Ω ×
 v 

  

 

 
Ω × (

 
Ω ×
 r ) = −Ω2  R 

  

 

d v 
dt

=
dr
 v r

dt
+ 2
 
Ω ×
 v r −Ω

2  R 

𝑅𝑅：vector from the rota/onal axis to the fluid posi/on

Momentum equa7on in a rota7ng frame



Substituting the relationship into the momentum equation, one gets

Hereafter the subscript r is omitted. The effective gravity acceleration 
is defined as the sum of     and         .  Then the momentum equation in 
the rotating frame is

  

 

dr
 v r

dt
= −2

 
Ω ×
 v r −

1
ρ
∇p +

 g +Ω2  R 

  

 

 g   

 

Ω2  R 

  

 

∂
 v 
∂t

= −
 v ⋅ ∇ v − 2

 
Ω ×
 v − 1

ρ
∇p +

 g 

path of a ball seen 
in an iner/al frame

path of a ball seen 
in an rota/ng frame

Coriolis force



Salby (1996)
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We consider an expression in a Cartesian coordinate system on a 
spherical surface. Using the velocity component (u, v, w) in the unit 
vector system (𝚤𝚤, 𝚥𝚥, 𝑘𝑘),

Then
  

 

 v =
 
i u +
 
j v +
 
k w

  

 

d v 
dt

=
 
i du

dt
+
 
j dv

dt
+
 
k dw

dt
+ u d
 
i 

dt
+ v d
 
j 

dt
+ w d

 
k 

dt

𝚤𝚤 : eastward,  𝚥𝚥 : northward, 𝑘𝑘 : upward



Momentum equations (𝑎𝑎: planetary radius)

The deleted terms are “metric” terms arising from the spherical 
geometry and are negligible in many cases on the Earth.
* This is not the case for some planets such as Venus.

When  dw/dt = 0 , the equation in the 
vertical direction reduces to the hydrostatic 
equilibrium:
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utanφ
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∂p
∂z

= −ρg

 

f = 2Ωsinφ : Coriolis parameter

f : la-tude



Neglec+ng the metric terms and defining     = (u, v) as the horizontal 
component of the velocity, we have a set of governing equa+ons:

  

 

∂
 v 
∂t

= −
 v ⋅ ∇ v − w

∂
 v 
∂z

− fk ×  v −
1
ρ
∇p

  

 

∂w
∂t
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−
1
ρ
∂p
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∂ρ
∂t

= −∇⋅ (ρ v )

 

p = ρRT

  

 

∂θ
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 v ⋅ ∇θ − w ∂θ

∂z
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1
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R /C p

˙ H 

horizontal momentum eq.

ver-cal momentum eq.

con-nuity eq.

state eq.

thermodynamics eq.

 

f = 2Ωsinφ

 

˙ H 

: Coriolis parameter
: diabatic heating rate (J/m3/s)

diaba-c hea-ng

!!

𝑘𝑘 : unit vector in the ver-cal direc-on



Pressure coordinate

Large-scale atmospheric motions satisfy hydrostatic equilibrium. 
In this case the pressure p can be used as the vertical coordinate:

: vertical velocity in pressure coordinate
: geopotential 

 

ω ≡ dp dt
!

 

dΦ = gdz

小倉(1978)

Approximate rela9onship 
between w and w:

 

ω ≡ dp dt ~ w /ρg

𝑝𝑝 = 𝑝𝑝 𝑧𝑧 → 𝑧𝑧 = 𝑧𝑧(𝑝𝑝) p : pressure, z : al-tude 

 

ω ≡ dp dt ~ w /ρg〜 −

Pressure gradient force in the 
momentum equa9on:



Earth
300hPa height map
(2002/1/15) 

Venus
Latitudinal variation of 200hPa height
(Venus Express radio occultation, by 
Tellmann et al. 2009) 



"Primi*ve equa*ons" in pressure coordinate:

  

 

∂
 v 
∂t

= −
 v ⋅ ∇ v −ω ∂

 v 
∂p

− fk ×  v −∇Φ

 

∂Φ
∂p

= −
RT
p

  

 

∇⋅
 v + ∂ω

∂p
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∂θ
∂t
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 v ⋅ ∇θ −ω ∂θ

∂p
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1
cp
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R /C p
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horizontal momentum eq.

con-nuity eq.

state eq. + hydrosta-c equilibrium

thermodynamics eq.

 

f = 2Ωsinφ

 

˙ H 

: Coriolis parameter
: diabatic heating rate (J/m3/s)

𝑘𝑘 : unit vector in the ver-cal direc-on

!!

w : vertical velocity
: horizontal velocity= (u, v) 



Why do zonal currents 
predominate ?

How does the planetary 
rota9on affect the dynamics?



  

 

∂
 v 
∂t

= −
 v ⋅ ∇ v −ω ∂

 v 
∂p

− fk ×  v −∇Φ

Geostrophic flow

The ratio between the acceleration (U2/L) and the Coriolis force (fU)

Coriolis 
force

pressure 
gradient 
force

10-4 10-4 10-4 10-3 10-3 (m s-2)

For synop9c scale (>1000 km) mo9ons in Earth’s atmosphere:
horizontal scale L ~ 1000 km
pressure scale P ~ 1000 hPa
velocity scale U ~ 10 m/s
9me scale L/U ~ 105 s
Coriolis parameter f ~ 10-4 Hz

 

Ro ≡
U
fL : Rossby number  (around 0.1 on Earth, 10-100 on Venus) 



Coriolis force

pressure gradient 
force

pressure 
contourswind

Geostrophic flow is a good 
approxima9on for small Rossby 
numbers

  

 

fk ×  v g = −∇Φ

Definition of geostrophic flow

  

 

 v g =
1
f
 
k × ∇Φ

 

ug = −
1
f
∂Φ
∂y
, vg =

1
f
∂Φ
∂xor

  

 

∇⋅
 v g = 0

ω = 0

Geostrophic flow is two-dimensional:

Geostrophic flow is not a good approxima9on near the equator (f is small) or
for scales < O(100km) (L is small) where Ro (= U/fL) is large.

−∇Φ
𝑘𝑘



Thermal wind

Differen9a9ng                                with respect to p and using                      , 
“thermal wind“ rela9on is obtained: 

or  

cold warm

pressure 
gradient force

Coriolis force

Holton (2004)

  

 

fk ×  v g = −∇Φ

 

∂Φ
∂p

= −
RT
p

  

 

∂
 v g
∂p

= −
R
fp
 
k × ∇T

 

∂ug
∂p

=
R
fp
∂T
∂y

∂vg
∂p

= −
R
fp
∂T
∂x



Latitude-altitude cross section of Earth’s atmosphere

Temperature Eastward wind



La7tude-al7tude cross sec7on of Mars’ atmosphere

(Smith et al. 2001)

Temperature

Eastward wind



  

 

∂
 v 
∂t

= −
 v ⋅ ∇ v −ω ∂

 v 
∂p

− fk ×  v −∇Φ

Geostrophic flow on Mars?

The ra9o between the accelera9on (U2/L) and the Coriolis force (fU)

Coriolis 
force

pressure 
gradient 
force

10-4 10-4 10-4 10-3 10-3 (m s-2) on Earth

For synop9c scale (>1000 km) mo9ons in Earth’s atmosphere:
horizontal scale L ~ 1000 km
pressure scale P ~ 1000 hPa
velocity scale U ~ 10 m/s on Earth
9me scale L/U ~ 105 s
Coriolis parameter f ~ 10-4 Hz

 

Ro ≡
U
fL : Rossby number  (around 0.1 on Earth, 10-100 on Venus) 

à 100 m/s on Mars (westerly jet)
à 104 s on Mars

10-2 10-2 10-2 10-2 10-2 (m s-2) on Mars

around 1 on Mars ?



Superrota)on



Superrota)on

It prevails in Venus’s atmosphere
planetary rota+on: 1.8 m/s on the equator
zonal wind: 100 m/s at the cloud top

Momentum equa+ons

Atmospheric rota+on takes the place of planetary rota+on.
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f = 2Ωsinφ



Meridional force balance of zonal flow

Geostrophic flow 地衡⾵
(planetary rota*on >> wind) 

Cyclostrophic flow  旋衡⾵
(planetary rota*on << wind) 

Earth-like Venus-like 

pressure gradient

Coriolis force

pressure gradient

centrifugal force
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Thermal wind
Geostrophic flow

(planetary rota*on >> wind) 
Cyclostrophic flow

(planetary rotation << wind) 

2Ω sin𝜙𝜙 𝑎𝑎 𝑢𝑢 +
1
𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝜙𝜙

= 0 𝑢𝑢! tan𝜙𝜙 +
1
𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝜙𝜙

= 0

𝜕𝜕𝑢𝑢!

𝜕𝜕𝜁𝜁
+

𝑅𝑅
tan𝜙𝜙

𝜕𝜕𝑇𝑇
𝜕𝜕𝜙𝜙

= 0
𝜕𝜕𝑢𝑢
𝜕𝜕𝜁𝜁
+

𝑅𝑅
2𝑎𝑎Ωsin𝜙𝜙

𝜕𝜕𝑇𝑇
𝜕𝜕𝜙𝜙

= 0

𝜁𝜁 = − ln 𝑝𝑝 :  log-pressure al-tude

ß state eq.
ß hydrosta-c equilibrium



Latitude-altitude cross section of Venus’s atmosphere

(Piccialli et al., 2012)

Temperature Westward wind



Latitude-altitude cross section of Venus’s atmosphere

Cloud-tracked zonal winds around 70 km 
(Sánchez-Lavega et al. 2017)  

Zonal winds determined from cyclostrophic 
balance (Piccialli et al., 2012)

The discrepancy is not understood



Radia7ve energy budget and meridional circula7on

Holton (2004)

小倉(1978)

Hadley cell

Ferrel cellFerrel cell



Radia7ve energy budget and meridional circula7on

Read & Lebonnois
(2018)



Space and Cme-scales of dynamical atmospheric processes

©University Corpora-on for Atmospheric Research



Rota)onal wind and divergent wind
The horizontal velocity vector can be expressed with the stream 
func+on       and the velocity poten+al     :

Rota+onal wind is nondivergent

Divergent wind is irrota+onal

Rotational 
wind

Divergent 
wind

  

 

 v =
 
k × ∇ψ + ∇φ

 

ψ

 

φ

  

 

∇⋅ (
 
k × ∇ψ) = 0

 

∇ × ∇φ = 0

: geostrophic flow, Rossby wave

: convection, gravity wave

𝑘𝑘

 

φ



pressure
gradient force

Coriolis force

Planetary-scale mo)ons

(rotational flow) 
Mean zonal wind

(divergent flow)
Hadley circula*on 
Subsolar-to-an*solar circula*on



Rotational and divergent winds on Earth



Atmospheric waves

SaturnEarth

Venus

Mars



Atmospheric waves

Salby (1996)

RRoossssbbyy  wwaavvee ((hhoorriizzoonnttaall  oosscciillllaattiioonn）） GGrraavviittyy wwaavvee （（vveerr55ccaall oosscciillllaa55oonn））

• generated in an unstable background atmosphere
• transport momentum and energy over long distances
• induce mixing 



Vor7city
The circula+on C about a closed contour is defined as the line integral 
along the contour of the component of the velocity vector that is 
locally tangent to the contour: 

  

 

C =
! v ⋅ d
" 
l 

l
∫ =

! v cosαdl
l
∫ = (∇ ×

! v )⋅ " n dS
S
∫∫

n : unit vector normal to the surface

(Stokes’ theorem was used.)

Dividing the circula9on dC encircling a small 
area dS, and considering the limit dSà0, we 
get the vor+city: 

  

 

ζ =
δC
δS

= (∇ ×
! v )⋅
" 
k 

=
∂v
∂x

−
∂u
∂y

Holton (1992)

𝑘𝑘



Coriolis force

pressure gradient 
force

pressure 
contourswind

Quasi-geostrophic 
approximation

The real wind is divided into geostrophic wind and ageostrophic wind.

The ra-o of the magnitudes of the ageostrophic and geostrophic winds is the same 
order of magnitude as the Rossby number (around 0.1 in Earth’s atmosphere)

Lagrangian deriva-ve: 

  

 

! v = ! v g +
! v a

! v g ≡
1
f0

! 
k × ∇Φ

  

 

d
dt

=
∂
∂t

+
! v ⋅ ∇ +ω

∂
∂p

  

 

dg

dt
≡
∂
∂t

+
! v g ⋅ ∇

The advection term is approximated by advection by geostrophic wind:

 

Ro ≡
U
fL

𝑣𝑣!
𝑣𝑣"

= 𝑂𝑂 𝑅𝑅# ≪ 1

geostrophic wind

real wind



Beta-plane approxima7on

The first-order Taylor series approximation of the Coriolis parameter f :

where 

Mid-la9tude beta-plane :
Equatorial beta-plane : 

 

f = 2Ωsinφ
~ 2Ω [sinφ0 + (φ − φ0)cosφ0]
= f0 + β y

 

f0 = 2Ωsinφ0

β =
2Ω
a
cosφ0 ~

df
dy

 

f = f0 + β y

 

f = β y

x

y

0f0



Quasi-geostrophic vor7city equa7on
Introducing beta-plane approximation to the quasi-geostrophic Lagrangian
derivative and retaining small quantities to the first order, the rate of change 
of the geostrophic wind is given by 

  

 

∂
∂t

+
! v g ⋅ ∇

% 

& 
' 

( 

) 
* 
! v g = −( f0 + βy)

! 
k × (! v g +

! v a ) −∇Φ

~ − f0
! 
k × ! v a − βy

! 
k × ! v g

Since geostrophic wind is nondivergent (                 ), the con9nuity eq. is

  

 

∇⋅
 v g = 0

ω = 0

  

 

∇⋅
! v a +

∂ω
∂p

= 0

Opera9ng rota9on (∇×) to (1) and using (2), we have the quasi-geostrophic 
vor9city equa9on.  

(1)

(2)

𝑓𝑓$𝑘𝑘×𝑣⃗𝑣" + 𝛻𝛻𝛷𝛷=0

geostrophic flow



Vor9city changes with 9me through
- advec9on of absolute vor9city (             ) by geostrophic wind ( ) 
- ver9cal divergence (horizontal divergence)

  

 

∂ζg

∂t
= −
! v g ⋅ ∇(ζg + f ) + f0

∂ω
∂p

 

ζg ≡
∂vg
∂x

−
∂ug
∂y

=
∇2 ' Φ 
f0

: geostrophic vorticity

𝜍𝜍" + 𝑓𝑓 𝑣⃗𝑣"

Holton (2004)

Quasi-geostrophic vor9city equa9on:



Rossby wave

Let us consider a two-dimensional mo9on (w = 0) 

  

 

∂
∂t

+
! v g ⋅ ∇

% 

& 
' 

( 

) 
* (ζg + f ) = 0

à Absolute vor9city (            ) is conserved along the geostrophic wind .

A basic state where a homogeneous zonal flow exists:

𝜍𝜍" + 𝑓𝑓 𝑣⃗𝑣"

 

fu = −∂Φ ∂y

 

ζ g = 0
!𝑢𝑢

x

y
'Φ large (High pressure)

'Φ small (Low pressure)

𝑓𝑓;𝑢𝑢

−𝜕𝜕 ;𝜙𝜙/𝜕𝜕𝜕𝜕



The velocity and vor9city are related to the geopoten9al perturba9on

 

" ζ g =
∇2 " Φ 

f0
, " u g = −

1
f0

∂ " Φ 
∂y
, " v g =

1
f0

∂ " Φ 
∂x

Subs9tu9ng these into (1) and retaining first order terms only, we get 

 

∂
∂t
∇2 $ Φ + u 

∂
∂x
∇2 $ Φ + β

∂ $ Φ 
∂x

= 0

The deviation from the basic state is denoted by ()’ :

 

∂
∂t # ζ g + (u + # u g )

∂ # ζ g
∂x

+ # v g
∂ # ζ g
∂y

+ # v gβ = 0 (1)

!𝑢𝑢8Φ :𝑢𝑢 + 𝑢𝑢"%8Φ + Φ%

𝑣𝑣"%

Φ′



Salby (1996)

 

c − u = − β
k 2 + l2

k： zonal wavenumber
l： meridional wavenumber
c： zonal phase velocity

• Propaga9on opposite to the planetary 
rota9on

• b effect (la9tude varia9on of the Coriolis 
parameter f) is needed.

• Longer waves (smaller k) propagate faster. 

The wave possesses angular 
momentum in the direc9on 
opposite to the planetary rota9on 

Assuming a wave solution                                                   , the phase 
velocity of Rossby wave is obtained as: 

 

" Φ = ˆ Φ exp[i(kx + ly − kct)]



Propaga+on of Rossby wave

Salby (1996)

  

 

∂
∂t

+
! v g ⋅ ∇

% 

& 
' 

( 

) 
* (ζg + f ) = 0

large f

 

f = 2Ωsinφ

small f



Earth

Saturn

Mars (MGS/TES temperature)

Longitude 

Pr
es

su
re

 (h
Pa

)

Rossby waves in 
planetary atmospheres



Rossby waves on Venus           

Linear solu/on of Rossby wave at 70 km 
(Kouyama et al. 2015)

The superrota9on of the atmosphere takes 
the place of planetary rota9on.

Venus’ 5-day wave observed by cloud-tracking 
(Nara & Imamura 2025)



Gravity wave

Holton 2004

Mars limb image taken by Mariner 9
(Anderson & Leovy 1978)



Gravity wave
In Cartesian coordinates, without the assump9on of hydrosta9c equilibrium, 
the governing equa9ons are:

 

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

=
1
ρ
∂p
∂x

∂w
∂t

+ u
∂w
∂x

+ w
∂w
∂z

= −
1
ρ
∂p
∂z

∂ρ
∂t

= −
∂(ρu)
∂x

−
∂(ρw)
∂z

∂θ
∂t

+ u
∂θ
∂x

+ w
∂θ
∂z

= 0

θ =
p
ρR

pS
p

& 

' 
( 

) 

* 
+ 

R /C p

T

horizontal momentum eq. 
(x-axis only)

continuity eq.

ver-cal momentum eq.

thermodynamics eq.



Equations for disturbances:

horizontal momentum eq. 
(x-axis only)

con-nuity eq.

ver-cal momentum eq.

thermodynamics eq.

 

ρ 
∂ $ u 
∂t

= −
∂ $ p 
∂x

ρ 
∂ $ w 
∂t

= −
∂ $ p 
∂z

− $ ρ g

∂ $ ρ 
∂t

= −ρ 
∂ $ u 
∂x

−
∂(ρ $ w )
∂z

1
θ 
∂ $ θ 
∂t

+ $ w 
N 2

g
= 0

$ ρ =
$ p 

cs
2 − ρ $ 

θ 
θ 

 

cs
2 =

cp
cv
RT

 

N 2 = g d lnθ 
dz

cs： sound speed 

N： buoyancy frequency



Assuming an isothermal atmosphere:

 

N 2 = g cpT

 

ρ (z) = ρs exp(−z /H)

Subs9tu9ng the wave solu9on                                                                   
(σ：frequency) into the governing equa9ons before, an equa9on for 
the ver9cal velocity w is obtained as 

 

" w (x,z,t) = ˆ w (z,t)exp[i(kx +σt)]

 

d2(ρ ˆ w )
dz2 +

1
H

d(ρ ˆ w )
dz

+
σ 2

cs
2 − k 2 +

N 2k 2

σ 2

% 

& 
' 

( 

) 
* ρ ˆ w = 0

 

ˆ w (z) = W (z)exp(z /2H) ↔ ρ ˆ w 2(z)∝W 2(z)

Considering the amplitude growth with height in a stra9fied atmosphere, w 
is assumed to have the form
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Then the equa9on becomes

 

d2W
dz2

+
σ2
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) W = 0

Assuming a wave solu9on                            (m: ver9cal wavenumber), the 
dispersion rela9on is obtained:    

 

W ∝ exp(imz)

 

m2 =
σ2

cs
2 − k

2 +
N 2k 2

σ2
−

1
4H 2

Solutions for acoustic-gravity wave and internal gravity wave exist.

Approximate solution for internal gravity wave is

𝜎𝜎& =
𝑁𝑁&𝑘𝑘&

𝑘𝑘& + 𝑚𝑚& + 1
4𝐻𝐻&

à 𝜎𝜎 < 𝑁𝑁



For large-horizontal scale waves (typical in planetary atmospheres),

à Long period waves have near-horizontal phase surfaces 
𝑘𝑘
𝑚𝑚

=
𝜎𝜎
𝑁𝑁

Holton 2004

Structure of gravity wave



Salby (1996)

Amplitude growth with height 
and wave breaking
à turbulence genera9on, 
mean-wind accelera9ongravity wave

acoustic wave

momentum flux
<u’w’>



Mountain waves on Earth

Mountain waves on Mars

on Venus

Observed gravity waves



Topographically-generated gravity waves (mountain waves) on Venus

55

• Geopoten-al forcing: 60 m2s-2 at (180°, 0°) , e-folding distance of 6°
• Grid: 3°×3°
• Al-tude range: 10 – 96 km, 100 layers

Z=65 km

Kitahara et al. (2020)

Fukuhara et al. 2017
Kouyama et al. 2017

10 µm283 nm



Thermal )des
Planetary-scale gravity wave generated by the movement of 
the solar heating region in the diurnal cycle

Excita9on mechanism:
- Earth : solar hea9ng of stratospheric ozone layer
- Venus : solar hea9ng of cloud layer
- Mars : solar hea9ng of atmospheric dust 

©NASA



Thermal tide in Earth’s atmosphere

Ver*cal structure

Holton (1992)



Thermal 2de in Venus’ atmosphere
Linear solution (Takagi & Matsuda, 2006） 

Dirunal Semi-diurnal

Temperature perturbation 
(Schofield & Taylor 1983)



Thermal tide in Mars’ atmosphere

Wavenumber 1+2 
components observed 
by MCS onboard MRO

Kleinbohl et al. 2013

Mars GCM


