Atmospheric dynamics |

Basic equations and atmospheric waves



Clouds on planets: Origin of albedo

Earth
albedo 0.30

Mars
albedo 0.16

Venus
albedo 0.78

Cloud distribution reflects atmospheric dynamics



Latitudinal variation: Limit of one-dimensional model

Meridional cross sections in Mars GCM
(Shaposhnikov et al. 2019)

Meridional distribution of zonal-mean
temperature of Mars obtained by MGS/TES
(Smith et al. 2001)

Summer Winter

3-D circulation can play crucial roles in vertical transport



Dependence on the rotation rate?

Rotation 243 days 1 day 10 hours
period



Parameter study of the
atmospheric circulation

of Earth-like planets with

general circulation
models (GCMs)

Williams (1988)

Meridional stream
function
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Fig. 3. Meridional distribution of the mean stream function for the MOIST model with Q% = 0-8. Units: 10" g s~!



Momentum equation

Momentum equation in the inertial coordinate system

v :velocity

&1 ) )

_=__Vp+g t:time . .

dt P p : atmospheric density
p : atmospheric pressure
g : gravity acceleration

Pressure gradient force

Po
X-com ponent

Holton, 2004



Momentum equation in a rotating frame

Let us consider a frame rotating at an angular velocity Q.

For a position vector 7, the relationship between the time derivative in
the inertial frame d /dt and that in a rotating frame d/dt is

dr dr = _
=——+Qx7
dt dt
SV =V o+ QxF v, :velocity in rotating frame
Similarly \
av dv ..
=——+QxV
dt dt

Combining these, using Q x (Q x 7) = -Q?R we have
dv dv - .
=1L 42QxV —Q°R
dt dt

R : vector from the rotational axis to the fluid position



Substituting the relationship into the momentum equation, one gets
dv . 1 .
S 2O x¥, ——Vp+3+ QR
dt 1o,
Hereafter the subscript r is omitted. The effective gravity acceleration
is defined as the sum of & and Q*R. Then the momentum equation in
the rotating frame is
v

- 1
= VP 20XV |- —Vp+

Coriolis force

path of a ball seen
in an inertial frame

path of a ball seen
in an rotating frame




We consider an expression in a Cartesian coordinate system on a
spherical surface. Using the velocity component (i, v, w) in the unit

vector system (7, ], k),

U : eastward, J: northward, k: upward

V=iu+jv + kw
Then _ _ _
dv ~du -dv -dw |di dj dk
=l—+j—+k—+U—+Vv—t+tw—
1| dt dt dt dt dt dt dt

Salby (1996)

Figure 11.2 Spherical coordinates: longitude A, latitude &, and radial distance r. Coordinate
vectors e, i,e, =j,and e k change with position (e.g., relative to fixed coordinate vectors

¢,, ¢, and ¢, of rectangular Cartesian coordinates)



Momentum equations (a: planetary radius)

du (2Qsin¢ 7ﬂ) % W £
dt

@=—(2£251n¢+u7ﬂ)u—vw 1op

dt a a pay

d ’ 1
YWY ucesg- 1P
dt a P 0z

-8 f =2Qsin¢ : Coriolis parameter

The deleted terms are “metric” terms arising from the spherical
geometry and are negligible in many cases on the Earth.

* This is not the case for some planets such as Venus.
1\

When dw/dt =0, the equation in the
vertical direction reduces to the hydrostatic
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Figure 11.3 Planctary vorticity 242 decomposed into horizontal and vertical components.
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Neglecting the metric terms and defining v = (u, v) as the horizontal
component of the velocity, we have a set of governing equations:

v v - 1
—v=—\7-V\7—w—v—fk><\7——Vp
ot 0z P
ow . ow 1 dp
— ==V VW-w———— -
ot 0z p 0z
0P ~
= V- (0ov
Py (pv)
p = PRT

R/C
00 00 1 "
5 Ve-w | P H
ot dz ¢, \ p

diabatic heating

il NI )

horizontal momentum eq.

vertical momentum eq.

continuity eq.
state eq.

thermodynamics eq.

. unit vector in the vertical direction
=2Qsin¢g : Coriolis parameter
: diabatic heating rate (J/m3/s)



Pressure coordinate

Large-scale atmospheric motions satisfy hydrostatic equilibrium.
In this case the pressure p can be used as the vertical coordinate:

p = P(Z) - | z=2z(p) p : pressure, z : altitude

w|=dp/dt :vertical velocity in pressure coordinate
®| :geopotential dPb = gdz

2 p—38p Approximate relationship
between w and w:

w =dp/dt
~-w/pg

Pressure gradient force in the
momentum equation:

—%Vp D -V

B3.2 xzEANDOKIE /IE(1978)



Venus

Earth
380hPa height map I(_\jtitudinal variationi of 200hPa. height
(2002/1/15) enus Express radio occultation, by

Tellmann et al. 2009)



"Primitive equations" in pressure coordinate:

c')_v = _—9-Vy — wa_v - ﬂ; xv —VP horizontal momentum eq.
ot ap
0P RT : I
— = state eq. + hydrostatic equilibrium
ap p
. Jdw -
V-v+—=0 continuity eq.
P

90 00 1 (p\"
~~ —_y-VO - + (pS) H thermodynamics eq.

= (u, v) : horizontal velocity
: vertical velocity

‘_}’

1)

k : unit vector in the vertical direction
f =2Qsin¢g : Coriolis parameter

i : diabatic heating rate (J/m3/s)






Geostrophic flow

For synoptic scale (>1000 km) motions in Earth’s atmosphere:
horizontal scale L ~ 1000 km
pressure scale P~ 1000 hPa
velocity scale U~ 10 m/s
time scale L/U ~ 10° s
Coriolis parameter f ~ 104 Hz

o7 0 -
\%\?Nw_w Y K xV -V
9 op
Coriolis  pressure

force gradient
force

1074 1074 104 1073 102 (ms?

Jan 01 .. GMSIRI

The ratio between the acceleration (U2/L) and the Coriolis force (fU)

R,=— : Rossby number (around 0.1 on Earth, 10-100 on Venus)



.

N pressure gradient
—Vdforce

\/‘\

*— pressure
wmd contours

ﬂgxﬁg=—V(I) "’ /

Geostrophic flow is a good

approximation for small Rossby Coriolis force
numbers

Definition of geostrophic flow

1 - 1 0O 1 0O
- _ L w22, 292
v, kaVCI) or ¢ 7 oy ¢~ o
Geostrophic flow is two-dimensional:
V: \7g =0
w =0

Geostrophic flow is not a good approximation near the equator (f is small) or
for scales < O(100km) (L is small) where Ro (= U/fL) is large.



Thermal wind

Differentiating ﬂ; x Vv, =-V@® with respect to p and using b _ KT )
“thermal wind“ relation is obtained: Ip p
ov R -
—f =——k x VT
oo fp
or z
préssure v, Coriolis force
oy = R or /fg/rag)réat force /
op  Jp 9y S <E —
v, __ROT| ’
op  Jpox el
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Fig. 3.8 Relationship between vertical shear of the geostrophic wind and horizontal
temperature gradients. (Note: dp <0.)



Latitude-altitude cross section of Earth’s atmosphere

Temperature Eastward wind



Latitude-altitude cross section of Mars” atmosphere

Temperature

Eastward wind

(Smith et al. 2001)



Geostrophic flow on Mars?

For synoptic scale (>1000 km) motions in Earth’s atmosphere:
horizontal scale L ~ 1000 km
pressure scale P ~ 1000 hPa
velocity scale U~ 10 m/s on Earth > 100 m/s on Mars (westerly jet)
time scale L/U ~10°s = 10%s on Mars
Coriolis parameter f ~ 104 Hz

o7 o -
\%}C‘W““ Y XV -V
a a pressure

Coriolis
force gradient
force

1074 1074 104 1073 10 (ms? on Earth
1072 1072 1072 1072 102 (m s? on Mars

The ratio between the acceleration (U2/L) and the Coriolis force (fU)

U
R, =— : Rossby number (around 0.1 on Earth, 10-100 on Venus)

[0} fL
around 1 on Mars ?



Superrotation




Superrotation

It prevails in Venus’s atmosphere
planetary rotation: 1.8 m/s on the equator

zonal wind: 100 m/s at the cloud top

Momentum equations

du (Q n(p_l_utangb) 7% W———
dr a 0 0x

1
dv =_(2Q o+ utan ¢ LYY _1ap
dt a a pady
dw u2-|7\% 1 op
= - 2Qucosp - —— - = i
i g ¢ 00z 8 f =2Qsin¢

Atmospheric rotation takes the place of planetary rotation.



Meridional force balance of zonal flow

Geostrophic flow H1&JE| Cyclostrophic flow 2 &
(planetary rotation >> wind) (planetary rotation << wind)

Earth-like Venus-like



Thermal wind

Geostrophic flow Cyclostrophic flow
(planetary rotation >> wind) (planetary rotation << wind)

EVV -(29sin¢+ ”tan"))u -Xg_la—p
d a a\ pady

2Q sin ¢ +1ap 0 2t ¢+16p 0
sinpau+———= u” tan —— =
p 0 pod
< state eq.
< hydrostatic equilibrium

au_F R aT__O du’? R 6T__O
¢ 2aQsin¢ dp zx'+mn¢a¢_

( = —Inp : log-pressure altitude



Latitude-altitude cross section of Venus’s atmosphere

Temperature Westward wind

(Piccialli et al., 2012)



Latitude-altitude cross section of Venus’s atmosphere

Cloud—-tracked zonal winds around 70 km Zonal winds determined from cyclostrophic
(Sanchez—-Lavega et al. 2017) balance (Piccialli et al., 2012)

The discrepancy is not understood



Radiative energy budget and meridional circulation
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ig. 10.7  Streamfunction (units: 10? kgm~'s~ 1) for the observed Eulerian mean meridional circu-
lation for Northern Hemisphere winter, based on the data of Schubert et al. (1990).



Radiative energy budget and meridional circulation

Read & Lebonnois
(2018)



Space and time-scales of dynamical atmospheric processes

©University Corporation for Atmospheric Research



Rotational wind and divergent wind

The horizontal velocity vector can be expressed with the stream
function ¥ and the velocity potential ¢ :

V= kxVy + V¢

Rotational Divergent
wind wind

Rotational wind is nondivergent

V- (l_é x Vi) =0 :geostrophic flow, Rossby wave

Divergent wind is irrotational

VxV¢=0 : convection, gravity wave



Planetary-scale motions

(rotational flow)
Mean zonal wind

(divergent flow)
Hadley circulation
Subsolar-to-antisolar circulation




Rotational and divergent winds on Earth

a Rotational Wind m/s
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Atmospheric waves

Earth Saturn

Fig. 1. VMC images of polar waves: leflt - long waves (NIR1 filter), middle - long waves producing short wave trains (UV), right - irregular waves (UV)

Venus

Mars



Atmospheric waves

e generated in an unstable background atmosphere
e transport momentum and energy over long distances

* induce mixing

Rossby wave (horizontal oscillation)  Gravity wave (vertical oscillation)

Salby (1996)



Vorticity

The circulation C about a closed contour is defined as the line integral
along the contour of the component of the velocity vector that is
locally tangent to the contour:

C = g!Sv- dl = glﬁ\ﬂcosadl = j;f(V X V) ndS
n : unit vector normal to the surface

(Stokes’ theorem was used.)

Dividing the circulation oC encircling a small
area oS, and considering the limit 6520, we
get the vorticity:

oC

C=g=(Vx\7)-l€
_v _ou
ox dy

Holton (1992)



.

A

QuaS|—geOSt roph |C — pressure gradient

approximation NN

real wmd —~ *— pressure

Jkxv geostrophlcwmd ,// contours
H — /

The real wind is divided into geostrophic wind and ageostrophic wind.

Coriolis force

vV =V vV v
V=V TV —~=0(R,) « 1
S _ L Y
v, =—k x V@ LU
fo 0=fL

The ratio of the magnitudes of the ageostrophic and geostrophic winds is the same
order of magnitude as the Rossby number (around 0.1 in Earth’s atmosphere)

Lagrangian derivative: ;7 4 0

—=—+V'V+w—
dt 0t op

The advection term is approximated by advection by geostrophic wind:

d 0
L =—4V |V
dt or L°




Beta-plane approximation

The first-order Taylor series approximation of the Coriolis parameter f:

f =2Qsing
~2Q [sing, + (¢ — P,)cos ]
=Jfo+ Py
where
fo =2Q2sin ¢,
202 df

=——COSQ, ~ —
a P d

Mid-latitude beta-plane: f =f,+ By
Equatorial beta-plane:  f =y



Quasi-geostrophic vorticity equation

Introducing beta-plane approximation to the quasi-geostrophic Lagrangian
derivative and retaining small quantities to the first order, the rate of change
of the geostrophic wind is given by

0 —~ :
(_ +7, - V)“/’g =—(fo+ Pk x(V, +V,) - VP geostrophic flow

! fok X, + V=0
. _ Xv =
~ —fok x ¥, = Byk x ¥, (1) « R

Since geostrophic wind is nondivergent ( V- v, =0 ), the continuity eq. is

V-v +—=0 (2)

Operating rotation (VX) to (1) and using (2), we have the quasi-geostrophic
vorticity equation.



Quasi-geostrophic vorticity equation:

¢, ow
— ==V V(I + )+ f,—
o = V&N
0 0 ‘P
C = R Ve : geostrophic vorticity
*oax  dy  f,

Vorticity changes with time through
- advection of absolute vorticity ( §g + f ) by geostrophic wind (7, )
- vertical divergence (horizontal divergence)

8+ 86

—\_/_\ Holton (2004)
|

6

Fig. 4.7 A cylindrical column of air moving adiabatically, conserving potential vorticity.



Rossby wave

Let us consider a two-dimensional motion (® = 0)

o
(5+vg V)(z;g +f)=0

- Absolute vorticity (¢4 + f) is conserved along the geostrophic wind 7y .

A basic state where a homogeneous zonal flow exists:

fit = -0®/dy
E _0 @ small (Low pressure)
¢ g/ AT .
o u
y A

@ large (High pressure)
X



Of
VVVY

The deviation from the basic state is denoted by ()’ :

d G, G,
—C +(u+u)—+v,—+v' =0 1
8tcg ( 2 dx ¢ dy P )

The velocity and vorticity are related to the geopotential perturbation

- \AC 1o 109
= , U - s V, =7~
i fo : fo 9y o fy ox P’

Substituting these into (1) and retaining first order terms only, we get

0 0 oD’
—V®+u—VD+—=0
Jt 0x 0x




Assuming a wave solution @' = &)exp[i(kx + ly — kct)], the phase
velocity of Rossby wave is obtained as:

B p k: zonal wavenumber
kz R lz I: meridional wavenumber
c: zonal phase velocity

Propagation opposite to the planetary
rotation

B effect (latitude variation of the Coriolis
parameter f) is needed.

Longer waves (smaller k) propagate faster.

The wave possesses angular
momentum in the direction
opposite to the planetary rotation

Salby (1996)



Propagation of Rossby wave

large f
srlallf
(im -V)((;‘ +f)=0
at 8 8 -
f =2Qsing

Salby (1996)



Rossby waves in
planetary atmospheres

Saturn
Earth =
(a1
<
v
>
(V)]
(V)]
Q
| -
(a1
0 90 180 270 ~ 7 360
Longitude

Mars (MGS/TES temperature)



Rossby waves on Venus

Venus’ 5-day wave observed by cloud-tracking
(Nara & Imamura 2025)

Linear solution of Rossby wave at 70 km
(Kouyama et al. 2015)

The superrotation of the atmosphere takes
the place of planetary rotation.



Gravity wave

Height —w

P
&d\ ,/‘ /
& 5 > %
s AL
4 4

Horizontal distance —w=

Holton 2004

Mars limb image taken by Mariner 9

(Anderson & Leovy 1978)



Gravity wave

In Cartesian coordinates, without the assumption of hydrostatic equilibrium,

the governing equations are:

ou ou ou 1 dp
—+tU—F+W—=——
ot 0x dz pox

ow ow ow 1 op
—tU—+W—==———
ot 0x 0z P 0z

9p _ d(pu) d(pw)
ot 0x 0z
00 00 90

—+uUu—+w—=0
ot 0X 0z

RIC,
PR\ p

T

horizontal momentum eq.
(x-axis only)

vertical momentum eq.

continuity eq.

thermodynamics eq.



Equations for disturbances:

_ou _ op' horizontal momentum eq.
p Ot X (x-axis only)
_ow'  dp ,
P ot - 0z —P8 vertical momentum eq.
o' _du'  d(pw)
ot U ox oz continuity eq.
1000 N’
=—+w—=0 -
0 ot g thermodynamics eq.
P Y
P Csz P ]
2 CP
c. =—RT c,: sound speed
CV
N? = gdln@ N: buoyancy frequency




Altitude

Assuming an isothermal atmosphere:
N*=g/c,T
p(2) = p,exp(-z/H)

Substituting the wave solution W'(x,z,1) = w(z)expli(kx + ot)]
(o:frequency) into the governing equations before, an equation for

the vertical velocity w is obtained as

o> ., N%
2 k™ + 2
C O

s

—_A

ow =0

d’(on 1 d(pw
(i) , L d@) |

dz H dz
Considering the amplitude growth with height in a stratified atmosphere, w

is assumed to have the form

w(z) =W (2)exp(z/2H) < pw’(z) x W(2)



Then the equation becomes

dW |0, Nk 1
dz’ | c; o 4H’

S

W =0

Assuming a wave solution W «exp(imz) (m: vertical wavenumber), the
dispersion relation is obtained:
212
m2=g2__kz+Nk_1
cs2 o 4H?

Solutions for acoustic-gravity wave and internal gravity wave exist.

Approximate solution for internal gravity wave is
N2k2
0‘2 = - o<N

1
k2+m2+m




Structure of gravity wave

For large-horizontal scale waves (typical in planetary atmospheres),

1=k
ml|l IN — Long period waves have near-horizontal phase surfaces

Height —w»

Holton 2004

Horizontal distance —w

Fig. 7.9 Idealized cross section showing phases of pressure, temperature, and velocity perturbations
for an internal gravity wave. Thin arrows indicate the perturbation velocity field, blunt solid
arrows the phase velocity. Shading shows regions of upward motion.



c
. g
acoustic wave /

O > Wy

momentum flux
<uy'w'>

gravity wave

Salby (1996)

Amplitude growth with height
and wave breaking

- turbulence generation,
mean-wind acceleration



Observed gravity waves

- ’ (.’- -. r /\-;IA'-L
i
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!

Fig. 11. VMC images of polar waves: left - long waves (NIR1 filter), middie - long waves producing short wave trains (UV), right - {rregular waves (UV),

on Venus

Mountain waves on Earth

Mountain waves on Mars



Topographically-generated gravity waves (mountain waves) on Venus

0101

Fukuhara et al. 2017
Kouyama et al. 2017

250 280 310

Kitahara et al. (2020)



Thermal tides

Planetary-scale gravity wave generated by the movement of
the solar heating region in the diurnal cycle

©ONASA

Excitation mechanism:
- Earth : solar heating of stratospheric ozone layer

- Venus : solar heating of cloud layer
- Mars : solar heating of atmospheric dust



Thermal tide in Earth’s atmosphere

Vertical structure
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Fig. 4.7. (a) Amplitude and (b) phase of solar diurnal component of T at various latitudes
for equinox. [After Lindzen (1967).]

Holton (1992)



Thermal tide in Venus’ atmosphere

Linear solution (Takagi & Matsuda, 2006)
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Thermal tide in Mars” atmosphere

Wavenumber 1+2

components observed
by MCS onboard MRO

Mars GCM

Kleinbohl et al. 2013



