Vertical structure of the atmosphere



Earth's atmospheric structure
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Vertical structures of planetary atmospheres
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Pressure decreases with altitude:
Hydrostatic equilibrium

The gravitational acceleration is assumed to be a constant value g.

The balance between the pressure gradient force and the gravitational
acceleration in the vertical direction is

—SAp = gpSAz
dp |
A 8P (1.1) Pﬂp
p:pressure z: altitude p:mass density(kg/m3)

This is equivalent to the vertical momentum equation

aw  1op | |l
dt p 0z 5

except that the vertical wind w is assumed to be zero.



Integrating (1.1) we have

p(2) = f gp(Z')dz' > Atmospheric pressure is the total column
¢ weight of the atmosphere above.

The equation of state:
R : gas constant (= 287 J/K/kg for Earth)
p= pRT (1.2) R = k/m, where k is Boltzmann’s constant and
m is the mean mass of molecules

Combining (1.1) (1.2), we have
dp __sp

dz RT

z d7' ps : surface pressure
fo H(-' H = RT/g : scale height (6-8km on Earth)
(Z ) (~16 km on Venus, ~11 km on Mars)

=~ p(z) = pg exp(—

When the temperature is constant with altitude,

Z
p(Z) = Dy eXp(—E) - Pressure decreases with height at a

length scale of H.



Atmospheres tend to have layered structures:
Static stability
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Mars' layered clouds and dust
(Stenzel et al. 2011)



Thermodynamics

First law of thermodynamics: dH : heat given to gas of unit mass
5 1 ¢, : specific heat for constant volume
dH =c dT + pda (2.1) a = 1/p : specific volume

Combined with the state equation pa =RT | we obtain

pda + adp = RdT (2.2)

Combining (2.1)(2.2) yields
dH =c ,dT - adp (2.3)

C, = €, *+ R : specific heat for
constant pressure

Considering an adiabatic (BTZAAY) process (dH = 0), we have

RT
cpdT = ? dp

c,d(InT) = Rd(In p)

R/C
s T =const.xp '



Then, Potential temperature (i2{iL) @ is defined as

R/C,
6 = T(&) (2.4)
p

is conserved in adiabatic processes.

In adiabatic ascent or decent, @ is constant with altitude. In this case, under
hydrostatic equilibrium, we obtain

=-I, (25

I'y=g/C, : Adiabatic lapse rate (9.8 K/km on Earth)

expansion

d—TZ—Fd ﬁ
I
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. compression

Altitude
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Catling & Kasting (2017)

Table 1.3 Thermodynamic properties and lapse rates on various planets.

Iy = glc, T observed in
Main Molar mass, R J kg™ cpJ kg™ troposphere troposphere
Body gases M g mol™ K gms> K K km™! K km™
Venus CO, N, 4345 189 8.901 930 9.5 ~8.0
Earth N, O, 28.97 287 9.81 1004 9.8 ~6.5
Mars CO,, N, 43.5 191 3.72 850 4.4 ~2.5
Jupiter H,, He 222 3745 24.25 10 988 2.1-2.45* 1.9
Saturn H,, He 2.14 3892 10.0 10 658 0.7-1.1 0.85
Titan N,, CH, 28.67 290 1.36 1044 1.3 1.0-14
Uranus H,, He 23 3615 8.80 8643 0.7-1.1 0.75
Neptune H,, He 23 3615 11.1 8643 0.85-1.34 0.95
HD209458b H, 2.0 4160 18.5 14 300 1.3 ~0.2 (model)**
* On giant planets, g varies from equator to pole.
** Menou and Rauscher (2009). 6 T '
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Static stability 5T

The buoyancy acting on an air parcel is given by

dZZ -y ﬁ — Pp z:altitude of the air parcel t

- 0 : mass density of ambient air _ T
dt’ 0 - .y . p, T
p P, : mass density of the air parcel

Assuming that the pressures of the air parcel and the ambient atmosphere
are equal, we have

2 7-1 -1 T _
d°z _ I - Tp _ 7; -7 (2.6) T : ambient temperature
dt2 =8 T -1 =8 T ' T, : temperature of air parcel
p

Temperatures are expressed by using the temperature T, at the original

position (z = 0):
Z A

T =T,-T U

= —_— Z _
0 (2.7) o dz

I, =T,-1,z

[=—dT/dz :Ambientlapse rate

\ 4
~3|

Iq =9/Cpy : Adiabatic lapse rate



From (2.6)(2.7)

dt’ T,

When I'y—1T' is positive, an oscillating solution exists.

Buoyancy frequency N is given by

N2 =ng -T =galn§
1, 0z
Static stability is defined by
_ar 2
S=—+Ty >S5S XN

Three types of static stability condition:

[[—T>0 & §>0 ¢ 00/0z>0 < N?>>0
[,—T=0 & S=0e 00/0z=0 & N?=0
[,—T<0 o S<0 e 00/0z<0 & N?2<0

Buoyancy oscillation

: Stable
: Neutral
- Unstable

[=—dT/dz :ambientlapse rate

[q =9/Cpy : adiabatic lapse lapse rate
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Relative Altitude (km)

Stability of Earth’s atmosphere

Gettelman et al. (2011)
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Altitude (km)

Stability of Venusian atmosphere
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Altitude, km

Stability of Martian atmosphere

Mixed boundary layer during daytime Detached mixed layer during nighttime
(Hinson et al. 2008) (Hinson et al. 2014)
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Radiation

Energy balance of a planet
Inflow : Visible wavelength radiation from Sun

Outflow : Infrared radiation from the surface and the atmosphere
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Logarithm of the black-body spectral radiance B, (T), plotted against the logarithm of wavelength
A, for T = 6000K, a typical temperature of the solar photosphere, and 288 K, the Earth’s mean
surface temperature.



F 4
(Catling & Kasting) &

do
Planck function (J/m2/s/str/Hz) A
ry
Fy
2hV3 ///
Bv (T) - 2 hv/kT :
c (e -1)
dn A— >y

h: Planck’s constant c:speed of light 6 <
v: frequency k:Boltzmann's constant .

Integration for wavelength and for solid angle over a hemisphere

fozndqbf:/zdﬁsinﬁcose fooodev (T)=mn f:dev(T) = oT*

Integration for Integration for
solid angle frequency

o : Stefan-Boltzmann's constant



Energy budget of Earth

Infrared

visible radiation radiation

— > N
»A( \planet
ozl ﬁ /
Sun — > %

Incident solar flux Outgoing infrared flux

(1-A)S T a2 41T a0 14

A:Albedo (0.3 for Earth)
S:Solar constant (1370 W m-2 for Earth)

o : Stefan-Boltzmann constant

Substituting the values for Earth, we obtain




* In reality the mean surface temperature is around 15°C
- Greenhouse effect by water vapor and CO,

» Infrared-active gases absorb thermal infrared radiation emitted
from the surface and prevents escape of energy to space

-’



Interaction between electromagnetic waves and molecules
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Quantized Energy Levels

Vibrational energy levels

1
Ev = hVO (U +E)

v : vibrational quantum number

Rotational energy levels

E] =hB(J(J + 1))

J : rotational quantum number

Catling & Kasting (2017)
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order to show the Q-branch AJ transitions.
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Fig. 4.21 Spectra in the thermal infrared, plotted as brightness temperatures, for four planets
and Titan. Features that show as “absorptions™ are formed in a region of negative temperature
gradient (troposphere); those that show as “emissions™ are from a warm stratosphere. [After
HANEL (1983).]



Radiative transfer in plane-parallel atmosphere

Radiative transfer equation
dl = (absorption) + (emission) = -k _Ids+ k_B(T)ds

dl
. T de =—-1+B(T) |:radiance (J/m2/s/str/Hz)

k,ds k,:absorption coefficient
s:coordinate along the ray

Optical depth

0/0] Iv+‘ﬁv
| .
T = fz kadz height dm)/
: : : : A
Equation for radiance with the zenith
angle of 8 (u=cos9) i 0
ds
dl /
—=[/-B y

dt

Catling & Kasting (2017)



Upward radiance at the top of the atmosphere

1 =B(TS)6XP(_TS) + f;s B(T(r))exp(—r) dt Contribution function

= B(Y;)exp(—rs) + f OOOB(T(z)) k, (z)exp(—r(z))dz

From surface From atmosphere

0.01

— 624.27
—— B34.85
—— 645.43
— 656.01
— 666.60
. 677.18 4
687.76 5
698.34
708.92

o

Contribution functions for Mars atmosphere
in infrared (Conrath et al. 2000)

Pressure (mbar)

40

Contribution Function

Plate 1. Contribution functions (functional derivatives of radiance with respect to temperature) for the
wavenumbers used in the temperature retricvals. These functions were calculated using (10) and are for the
nominal Thermal Emission Spectrometer (TES) 10 em ™" resolution, Units for the contribution functions are
Wem rfem K



Temperature distribution retrieved from Mars Global Surveyor TES spectra
(Smith et al. 2001)
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Contribution functions for Venus atmosphere
(Schofield & Taylor 1983)

TABLE 1. OIR TEMPERATURE-SOUNDING CHANNELS — OPTICAL PROPERTIES

Channel* Field of view** Effective wavelengtht Spectral Obtained tem pe rature distribution

. ull angl A il of Venus atmosphere
1 50 6670 150 0008 (Schofield & Taylor 1983)
2 1-25 679-4 14-7 10-7 —
6t 3 1-25 7272 138 12:0 {110
4 1-25 764-4 131 143
5 1-25 872:0 11-5 223 5t / k ]
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at 11-5 um is indicated by a dotted line.



Upward/downward flux (8’ =t—8) (i = cosB)

F'= [7dp [ 10)cos05in0d6 =2 [ Iwudu =7 [[1Gwdu/ [ pdu

F=[7dp [ 16)cos05in6d6'= 27 [ Iwudu = [TI@udu/ [° pdu

Two-stream approximation:

— Salby (1996)
F' = I M) ............................... %Ih{ﬂuﬂﬁ} ........................................................................................... t=0

F' =nal(-n) c
T =u't
B =B
We have
dr'
~=F"'-B
dt
dF'
dt
1 ~3/5, corresponding to the zenith angle of 53° , is frequently adopted.

F'-B




Radiative equilibrium in gray atmosphere

= Absorption coefficient in infrared does not depend on the wavelength.
- The atmosphere is transparent for solar radiation (visible wavelength)
- Solar energy reaching the surface is converted to thermal emission.

* Plane-parallel atmosphere with the incoming solar flux of Fj:

F, = (1 A)S
0~ 4
Substituting
F*“ =F'-F!
F*" =F"'+F*
into (3.1), we obtain
d net .
- — Fsum —2B
dt
d sum ~ Fnet
dt

: net upward flux

: total flux

(3.2)

(3.3)

S : solar constant
A : albedo




Fret is equal to the incoming solar flux FO :

Fret = o0 (3.4)  :Net fluxis invariant
From (3.2)(3.4)
Foum _ o Bt (3.5) : Total flux is determined

From (3.3)(3.4) by the local temperature

F"" =F°T + F*"(t =0) (3.6)
From (3.5)(3.6)

i} § FO . Fsum * — 0
B(T)=—]7 +  =0) 37)
2 2
Since F¥= 0 at the top of the atmosphere (t*=0)
Fsum(l_,* =O) _ Fnet _ FO (3.8)
From (3.7)(3.8)
jal
B(T) = 7(? +1) (3.9)

Considering B* = 574 the temperature increases with decreasing the
altitude (greenhouse effect).

Large t can lead to high temperatures = Venus’ high temperature (t ~ 2000)
Earth’s moderate temperature (t ~ 1)



The temperature at the top of the atmosphere (t*=0) is

1/4
T = (FO/QG) . “skin temperature” = temperature of the
stratosphere

This value is lower than the effective temperature.

From (3.4)(3.5) and the definition of F"¢t and F*'™, we obtain

| Fsum _Fnet . FO
F' = . - B - (3.10)

Emission from the surface is equal to the sum of the solar flux reaching the
surface and the downward emission from the atmosphere:

B*(TS) =FO+ F! (1;:) (3.11)  Ts: surface temperature
Ts: optical depth at the surface

From (3.10)(3.11), we obtain
0

%k %k k F
B{I,)=B (. )+—
( S) ( S) p) - Temperature discontinuity exists at the
surface  bottom of surface (Note that B" = oT*)
atmosphere




Temperature structure in a gray atmosphere

z-axis : optical depth z-axis : altitude
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Figure 8.20 Upwelling and downwelling fluxes and emission in a gray atmosphere that is
in radiative equilibrium with an incident SW flux F, and a black underlying surface. Note: the
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emission profile is discontinuous at the surface.
TEMPERATURE (K)
Figure 821 Radiative equilibrium temperature (solid lines) for the gray atmosphere in Fig.

8.20, with a profile of optical depth representative of water vapor (8.69), presented for several at-
mospheric optical depths 7,. Saturated adiabatic lapse rate (dotted lines) and radiative—convective

Sa | by ( 1 99 6) equilibrium temperature for 7, = 4 (dashed line) superposed.



Radiative-convective equilibrium

The radiative equilibrium temperature profile can be unstable at low altitudes.

Assumptions for calculating convective adjustment:

Vertical convection transports heat vertically, leading to an adiabatic lapse
rate (troposphere).

Above this convective region, the temperature profile remains to be the
radiative equilibrium one (stratosphere).

The surface temperature becomes equal to the atmospheric temperature at
the bottom.

The surface temperature is adjusted so that the upward energy flux
F'(t) =B (T,)exp(t -T) - f exp(t’ —1)B (T(7'))dr

becomes equal to the one for radiative equilibrium

. Fsum+Fnet FO .
F'(t) = 5 =2(T +2)

at the top of the troposphere.




Altitude

Radiative convective equilibrium
for Earth’s atmosphere
(Manabe & Strickler 1964)
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Radiative-convective equilibrium solution for Venusian atmosphere
(Pollack et al. 1980)

90
BREERUED Net downward solar flux
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(Moroz et al. 1985)
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Fig. 2. Comparison between the observed temperature structure -2
AF (Net Flu), Wm

of Venus' lower atmosphere and that of several models, which are de-
scribed in the main text. Figure 6-13. Globally Averageo Model of Total Solar Flux



Radiative-convective equilibrium solution for Martian atmosphere

without dust
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Frc. 1. Martian temperature calculations. The stippled area
represents temperatures reported by Kliore et al. (1972) and
Hanel et al. (1972). The lines are theoretical profiles for a
pure CO; atmosphere, at 1600 and at 0600 hours (the coldest
time). Both theory and observation refer to mid-latitude summer
conditions. The tags indicate the ground temperatures. In the case
of the 1600 theoretical profile a strong boundary layer is indicated.
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F1G. 2. Same as Fig. 1 except that the atmosphere contains an
extra solar absorber, evenly mixed with the atmosphere at all
levels, and having an optical depth of 0.10 at all wavelengths.
Note the weak boundary layer at 1600.

Gierasch & Goody (1972)



Internal heat of gas giants
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Internal heat sources include the rainout lioo
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continued Kelvin-Helmholtz contraction. ik Jioo
=~ |---f---TROPOPAUSE- =~~~ -~ -
2 z
. ) . & 80y
The Kelvin—Helmholtz mechanism is an 2 S 2
. w -SF7NH ADIABATIC 5
astronomical process that occurs when the — & &2 EXTRAPOLATION  _fgo <
I
surface of a star or a planet cools. The "~ a0
. NHZSH 4
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Fig. 126 Jovian temperatures and schematic cloud structure, based primarily on Voyager
infrared data. The height scale starts at the cloud base, approximately 5 bars. [After KUNDE et al.
(1982).]

Chamberlain & Hunten (1987)



TABLE 1.3 Characteristics of the Jovian Planets

Jupiter Saturn Uranus Neptune

Mean density (g/cm?) 1.34 0.70 1.58 2.30
Effective temperature (°K) 1244 95.0 58 2.3
Equilibrium temperature (°K) 109.5 82.3 57 46
Total flux/solar heat 1.668 1.78 <l1.3 1.1
Internal Aux (erg cm~Zsec” ') 3444 2000 <180 285
Adiabatic lapse rate (°K/km) 1.9 0.84 0.85 0.86
Tropopause temperature (°K) 105 85 54 52
Tropopause pressure (mbar) 140 80 100 200
Exospheric temperature (°K) 700-1000 420 700 —

Outward thermal flux > Incoming solar flux (Jupiter, Saturn)

The Earth's internal heat flux is 1/40000 of the Incoming solar flux.
This heat comes from a combination of residual heat from planetary
accretion and heat produced through radioactive decay.
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chromosphere
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The altitude of unit optical depth for vertical solar radiation. The principal absorption bands are
shown. Adapted from Meier (1991); an early version of this figure appeared in Herzberg (1965).
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Energy balance of the thermosphere
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Molecular diffusion coefficient for CO,

0.933
D =138%x105-+. (L) P * Atmospheric density
p \273 T : Atmospheric temperature

Chapman and Cowling (1970)

inversely proportional to the atmospheric density
- Large values at high altitudes

120 i - T v. M N T
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March 21,45°N - - 104
~ 110
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2 10k Molecular diffu ) E =
E D(CO,) / Kl
& 90 ///Eddy g
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Chabrillat et al. (2002)
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Figure 1. Vertical profiles of the eddy diffusion coeffi-
cient and the CO2 molecular diffusion coefficient, using the
SOCRATES baseline model. Latitude 45°North, equinox
(March 21), solar minimum conditions.
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Homopause levels

Table 1.1 Homopause levels. (Sources: Atreya ef al. (1991), p. 145; Atreya et al. (1999).)

(a)] Composition of Earth’s upper
atmosphere

Catling & Kasting (2017)

Planet Altitude (km) Pressure (pbar) Number density (molecules cm™)
Venus 130-135 0.02 7.5 x 10"

Earth ~100 0.3 10"

Mars ~130 0.002 10'°

Jupiter ove 1 bar level 1 1.4 x 10"

Saturn ~1140 above 1 bar level 0.005 1.2 x 10"

Titan 800-850 ~0.0006 2.7 x 10'°

Uranus ~354-390 above the 1 bar level ~20-40 1-2 x 10"

Neptune ~586—610 above the 1 bar level ~0.02 10"
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Thermospheres of the terrestrial planets
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The coolants in Earth’s thermosphere, CO, and NO, are relatively ineffective

because of their low concentrations.

On Venus and Mars, the atmospheres are almost CO,, which makes the upper

atmospheres cold through efficient radiative cooling.




Radiative energy balance at each altitude

100 [ _
80 -
I ' ]
[

E 60 -_ Total i _-
E - /Hzo -
.20 - .
< 40 —
I 1 ]
20 - S0, —
. ' [ \ -
- v | B |

0 ! 1 i 1 1

10 5 0 0 5 10

Cooling Heating

Global-mean vertical profiles of the short-wave heating rate and the long-wave cooling rate, in
Kday~7, including contributions from individual gases. Adapted from London (1980).

(Andrews 2010)



Jovian thermospheric temperature
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Figure 26. Density of the upper atmosphere as a function of
altitude, derived from measured probe decelerations. A major
change in density scale height occurred between 350 and 550
km. This coincides with the onset of diffusive separation. The
steeper slope above 550 km indicates a major warming of the
upper atmosphere.

SEIFF ET AL.: THERMAL STRUCTURE OF JUPITER'S ATMOSPHERE
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Figure 28. Temperature structure of the upper atmosphere
calculated from measured densities, derived pressures, and the
mean molecular weight profile of Figure 19. The effect of three
widely differing temperature assumptions at the initial altitude
is shown. The three profiles effectively converge at 750 km
altitude. Waves in the thermal structure and the deep isother-
mal layer below 300 km are conspicuous.
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Fig. 16. Neutral temperature as a function of altitude for several
cases of interest. The EUV results use only photoelectrons as a

heat source. The 20-eV case considers the heating due to 20-eV
electrons with an energy flux equal to 0.5 ergsem2s-1, The 1-and
10-keV auroral electron cases show the effects of electron heati
from 1- and 10keV electrons with an energy flux of 10 ergs cm~

s-1 and for auroral heating rates diluted by a factor of 10 to illus-
trate the possible global effects of auroral heating. The Voyager
UVS stellar occultation-derived profile is shown by the crosses.

Waite et al. (1983)

The temperature rise across the
thermosphere due to solar UV heating is
predicted to be <100 K.

A much stronger source of heat must be

present.

» Precipitating electrons ?

 Wave heating (gravity wave, acoustic
wave) ?



Heating of Jupiter’s upper atmosphere above the Great Red Spot
Donoghue et al. (2016, Nature)

* infrared spectroscopy using SpeX spectrometer
on the NASA Infrared Telescope Facility (IRTF)

* rotational-vibrational emission lines from Hs+, a
major ion in Jupiter’s ionosphere
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Figure 1 | The acquisition of Jovian spectra. a, Jupiter as observed by the the middle of the image indicates the position of the spectrometer slit, which
SpeX slit-jaw imager and L-filter (3.13-3.53um), on 4 December 2012. was aligned along the rotational axis. b, The co-added spectrum of seven
Bright regions at the poles result from auroral emissions; the contrast at low GRS-containing exposures; dotted horizontal lines indicate the latitudinal
and mid-latitudes has been enhanced for visibility. The vertical beige line in range of the GRS. Further details are given in the Methods section.



Temperature structure of the Saturnian atmosphere

(Schlnder et al. 2011)

: How is the thermosphere
. heated?
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Figure 1. Temperature-pressure profiles for 6 Saturn radio
occultation soundings by Cassini, 3 recorded in 2005 and 3
in late 2009 — early 2010. All profiles were started at 7 =
150 K at a pressure of 0.1 mbar. Note: 1 mbar = 100 Pa.
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Vertical structures of planetary atmospheres
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(Mueller-Wodarg et al.)



