kX EH - BREF A AREFEF2
RERIDAF)E— MUY )
Optical remote sensing of planetary atmospheres

MBI MRS EHEIZRER
S Al

Takeshi Imamura
t imamura@edu.k.u-tokyo.ac.jp

ol



Understanding the diversity of
planetary atmospheric environment

Atmospheric composition,
Solar flux, ..

Rotation rate,
Gravity acceleration,
Magnetic field, ..

Aerosols,
Topography, ..




Composition of planetary atmospheres

ONASA

photosynthesis
6 COy + 6H50 + energy — CgH1206 + 6 O-



Vertical temperature profiles of planetary atmospheres

(Mueller-Wodarg et al.)



Jupiter




Merits and demerits of observation methods

Lander Orbiter Ground-based
telescope
Spatial coverage Limited Global Global
Time coverage Short in many cases Long & continuous Repeatable

Observable
variables

- In-situ
measurements of
gases and rocks
- Many options

- Optical/radio remote
sensing

- In-situ plasma
measurements

- Optical/radio remote
sensing

- Instruments can be
large and new




Recent/future remote sensing missions

Venus Express Mars Reconnaissance Orbiter JUNO

MMX

JUICE




Interaction between electromagnetic waves and molecules

BT A
A€ OEA EBOL Ot BFHHOEL DEAL

— —

BFAE Y microwave IR UV/VIS X rg%

RS T IR FI5 vA4 7 u Zid) ot - A8 X- y-#R

e - -
:z | e @9 €9 |0-0

|ol°z t l(l)o 1([ cm™! l:)‘ T |Jo‘
10m l(Xicm Ic.m lmlnm l;;m IOlmn HE OOme
Ix 10* 3x110' 3x:0'° 3x1l0” Jxllo" Hz 3xll0"' F& w5 3: 10"
107 12" llo I?’ I?’ joules/mole l:)’ IANF— l?’

5.1 WD ANT bV L BREE5T (BF) OMEAERD A5 =X L
(Banwell and McCash, 1994)26)

25 (1999)



Molecular absorption £2 9 o,
=

Vs

3

//\\Vl
H H
,o/a\uv

(LibreTexts libraries) . .
Catling & Kasting (2017)



Catling & Kasting (2017)
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Line shape

Extinction line-shape function

coefficient /

ky = ZSnfl'z(V — Vy)

line strength
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Dominant in the lower atmosphere
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Fig. 4.21 Spectra in the thermal infrared, plotted as brightness temperatures, for four planets
and Titan. Features that show as “absorptions™ are formed in a region of negative temperature
gradient (troposphere); those that show as “emissions” are from a warm stratosphere. [After

HANEL (1983).]
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Infrared spectra
of the planets

Chamberlain & Hunten (1987)



Remote sensing of planetary atmospheres

T A f3 %R 8] Nadir sounding

Thermal emission [E#%E7 8] Limb sounding

(infrared) Thermal emission
(infrared, radio wave)

T 7 t3 %38 Nadir sounding

Scattered solar radiation

5

(UV, visible, near-infrared)

)

i &R Occultation

Using Sun or stars as light source

Sun or stars

(UV, visible, near-infrared)



Spectroscopy



Grating spectrometer

From Wikipedia
Crawford (2007)



Fourier spectrometer
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Solar occultation
strong light source = high S/N

Solar occultation spectrum of Mars atmosphere recorded
by ExoMars Trace Gas Orbiter/ACS Mid-IR channel
(at 5.5 km altitude)

Olsen et al. (2020)

contributions from
O;, H,0, and CO,
to the best-fit

data and best-
fits



Solar occultation by Venus Express/SPICAV-SOIR

atmospheric escape?

/ photochemistry?

Bertaux et al. (2007)



SO, SO, profiles above clouds observed by Venus
Express solar occultations (Belyaev et al. 2012)

SO: black
SO,: blue

SO, loss through
H,SO, production

Enhancement at high altitudes cannot be explained by existing
photochemical models.



Solar occultation by Venus Express/SPICAV-SOIR

Venus’ haze layer above clouds

Multiple aerosol layers
were discovered

Wilguet et al. (2009)



Stellar occultation by Venus Express/SPICAV

Stellar occultation can cover all

local times
A Signal from star: Atmospheric transmission
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Nadir infrared sounding:

- can cover all local times Thermal emission spectra of Mars measured by
- sensitive to temperature Mariner 9/IRIS

/ Tatmosphere > Tsurface
CO, band is observed as

emission

Tatmosphere < Tsurface
CO, band is observed as

absorption

!

Andrews
(2010)



Martian water vapor: Mars Express PFS/LW observations of
thermal infrared emission (Fouchet et al. 2007)



Retrieval of vertical structures from nadir-looking s’
thermal infrared spectra

Contribution functions for wavelengths in
CO, 15 ym band for Mars atmosphere

Outgoing radiation: Contribution function

I = B(Ts) exp(_Ts) + j B(T(Z)) ka(z)exp(—r(z)) dz
0
From surface From atmosphere

1-=f°°k dz :optical depth
Z a

|: radiance(J/m2/s/str/Hz)
B: Planck function
T: optical thickness
k,: absorption coefficient

(Conrath et al. 2000) z: altitude



Temperature retrieval from infrared spectra taken by Mars Global
Surveyor/TES

temperature

eastward wind

Coriolis force pressure gradient

—

ou
Thermal wind: e ROT

op fp dy

Smith et al. (2001)



-LOC1OC(PRESSURE /BARS).

Contribution functions for Venus atmosphere

(Schofield & Taylor 1983)
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TABLE 1. OIR TEMPERATURE-SOUNDING CHANNELS — OPTICAL PROPERTIES
Channel* Field of view** Effective wavelengtht Spectral
full angle resolutiontt
(degrees) (em™) (um) (cm™")
1 50 667-0 150 0-005
2 1-25 679-4 14-7 10-7
3 1-2§ 727-2 13-8 12:0
4 1-25 7644 131 14-3
5 1-25 872:0 11-5 223




Retrieved temperature distribution of
Venus atmosphere (Schofield & Taylor 1983)

1110
| 1105 warm polar stratosphere
1100
M 4 Thermal infrared images of Venus
H cloud obtained by Akatsuki LIR
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Figure 9. The retrieved zonal-mean temperature field and cloud structure. The temperature field is contoured
as a function of pressure and latitude, and the altitude scale is averaged over latitude. Cloud unit optical depth
at 11-5 um is indicated by a dotted line.
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Near-infrared windows of Venus
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Intensity (Erg sec” cm*® ster”’ um™')

100

Retrieval of the atmospheric composition of Venus from
infrared spectra taken by ground-based telescopes

Wavenumber (cm')
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& Spectroscopy of limb thermal emission

Doppler wind measurements of the Venusian thermosphere

from sub-millimeter CO absorption line observations
Clancy et al. (2012)

RSZ

SS-AS
SS-AS
ET
Gerald et al. (2017)



Limb spectroscopy of far-infrared emission
from Earth’s stratosphere : ISS/SMILES

Ozone
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UV backscatter:

sensitive to trace gases
in the upper atmosphere

Solar backscatter UV spectroscopy: Total
ozone mapping spectrometer (TOMS)

6 bands : 308.6, 312.5, 317.5, 322.3, 331.2, 360.0 nm

stratospheric ozone layer

Rayleigh scattering
troposphere




Infrared reflection:

sensitive to trace gases in the lower
atmosphere

GOSAT
Fourier Transform Spectrometer




Ground-based observation of methane in Mars atmosphere: utilizing
Doppler shift to remove the effect of Earth’s methane

Mumma et al. (2009)
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Transit spectroscopy of exoplanets

©ONASA



“Limb-viewing” spectroscopy of exoplanets

Kreidberg (2018)

Howe & Burrows (2018)

, , Models 1-3 use a solar-abundance
hydrogen-rich atmospheres with atmosphere, while Models 4 and 5 use

non-solar relative abundances an atmosphere of 1% H,0 and 99% N,



Imaging observation



Himawari (meteorological
satellite) imaging channels

JMA Himawari HP



Interference filter

A

d=
2ncos B

© C.R. Nave, HyperPhysics



visible channel infrared

water vapor



Cloud tracking

Movement
with time

Cloud tracked winds on the Earth
Univ. Wisconsin-Madison/CIMSS HP




Venus orbiter AKATSUKI

« Science target : ‘Weather of Venus’
— Mechanism of ‘super-rotation’

Structure of meridional circulation

Meso-scale processes

Formation of clouds

Lightning

Active volcanism, inhomogeneity of surface material
« Science instruments

1um Camera (IR1)

2um Camera (IR2)

Longwave IR Camera (LIR)

Ultraviolet Imager (UVI)

Lightning and Airglow Camera (LAC)

Ultra-stable oscillator (USO)
 Launch: May 2010 Arrival: Dec 2015




On-board instruments

five cameras + ultra-stable oscillator







Venus seen by Akatsuki

83 Nnm




Junocam: Juno’s Outreach Camera

Hansen et al. (2014)






Mars atmosphere observation
iIn MMX mission



<HHLARAA-T>
S/C Trajectory

sy Man Arial

Earth orbit

~ MMX: Martian
_ y Moons Exploration

| Ascent Trajectory
\ Descent Trajectory

e e

* Mission to Mars/Phobos/Deimos
e Sample return from Phobos

* Three years in Mars orbit

e Target launch year is 2024



Continuous global monitoring from
Martian orbit

High-altitude equatorial orbit is a unique

platform for atmospheric studies Venus images taken by
Akatsuki

uv

Ogohara et al. (2022)



Instruments for Mars atmosphere observation

Kameda et al. (2021)
* OROCHI (Kameda et al., 2021)

» 8 colors are available. 3 colors (480,
650, 950 nm) will be used for Mars
observation.

e 2.5 km/pix (sub S/C) from QSO

* TENGOO (Kameda et al., 2021)

* Panchromatic
* 35 m/pix (sub S/C) from QSO

* MIRS (Barrucci et al., 2021)

* Push-bloom type spectrometer
e Spectral resolution: 10nm

* Spectral bandpass: 0.9-3.6 um
e 2.1 km/pix (sub S/C) from QSO

Barucci et al. (2021)



Simulated MIRS spectrum

Barucci et al., EPS, 2022



Strategy of Mars atmosphere observation

High frequency, high spatial resolution, global monitoring of :
e Dust storms and their rapid development
* Fine structure of water vapor, water ice cloud, and their local time variation

Sampling interval = 15 min (OROCHI) or 1 h (MIRS)

Length of continuous monitoring =3 h

(limb viewing) Vertical profiles of water vapor, water ice, and dust

Global transport of dust, water
and trace gases






