WIKE BB - REY REFEF2
A A5 R E7 | )

Radio observations of planets using spacecraft

(L

HEBRIREFMRER EHEIZFER
Xl

Takeshi Imamura



Merit of radio observation

Techniques of high-precision frequency measurements are
available. This enables accurate retrieval of atmospheric
structures.

Facilities for telecommunication can be used for observations.
This saves weight resources of spacecratft.

Two types of observations are considered in today’s talk
— Radio occultation (active method)
— Spectroscopy/radiometer (passive method)
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Vertical temperature profiles of planetary atmospheres
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Radio occultation (EK#E#k)

a : Impact parameter
a : Bending angle
n : Refractive index

r : Distance from planet center

Abel transformation:

Inn(r) =——

n(ryr=a
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Tyler (1987)
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a : Impact parameter for a ray whose radius of
closest approach is r




Allan deviation

Ultra-Stable Oscillator (USO) on Venus orbiter

Akatsuki

Stability of USO after the launch
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The requirement (Allan dev
< 1x10-12 for T = 1-1000 s) is
satisfied.



High-gain antenna
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Signal intensity

Signal intensity time series (example
from Akatsuki)
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Data acquisition

Received signal : 8.4GHz

Mixing of local frequency
based on Doppler prediction
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Raw data of radio wave from Venus orbiter Akatsuki
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Need for narrow-band filtering (example from Akatsuki)

 Signal level at the receiver: P =3.0 X 10-7 W (at 1.73 X Earth-Sun-distance)

* Noise temperature of the receiver = 96 K (Usuda Deep Space Center, Japan)
> kT~ 1.3 X 10?! (unit: J = W/Hz)

Letting the band width be B (Hz), the S/N ratio is given by
P/kTB~23x 10%B

So that the S/N ratio is higher than the required value of ~10000, we require

B <20 Hz .
Signal spectrum
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Real voltage
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Precise phase/frequency estimation by phase unwrapping

Im
® Phase ()
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With sufficiently low-noise, the phase can be obtained from the
real and imaginary components of the data at each time step.
The frequency is obtained by differentiating the phase.



SPACECRAFT
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Refractive index n 1s related to atmospheric structure:
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Temperature at the upper boundary should be given from empirical
models. The effect of the upper boundary almost disappears 1-2 scale . @ _
heights below the boundary. " dz =—8P



Doppler shift (Hz)

Altitude (km)

Retrieval of a temperature profile
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Temperature profiles of the Venus atmosphere
obtained by Akatsuki radio occultation
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T : temperature

z : altitude

g : gravitational acceleration

¢, : specific heat for constant pressure



Radio occultation of Martian atmosphere

Convective boundary layer on Mars (Hinson et al. 2008)
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Examples of Venus’ electron density profile from Akatsuki radio

occultation
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Dual-frequency method for plasma measurement

To remove the effect of the fluctuation of the transmitted signal’s frequency
and the neutral atmosphere’s contribution, two frequencies generated from

the common onboard oscillator are used. A linear combination of these
phases can extract the plasma contribution.

oscillator noise +

plasma neutral atmosphere
Agg = —@Ne +Ha f : Phase shift of S-band
¢ fs
Ap, = _@ N |+Ha f, : Phase shift of X-band
¢ fy
0P =Ag —f—SA¢X =—403fs( — 12 j-Ne : Differential phase
Ix ¢ fS fx

N, : Column electron density
fs : S-band frequency
fy : X-band frequency



Dual-frequency radio occultation of lunar photoelectron

layer with SELENE

Vstar g5 radio waves in Pphase shift
S/X band
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Example from lunar plasma layer measurement in SELENE mission

Phase in S-band (¢s) and X-band (¢x)
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B —

Advancing
wavefront

limitation of vertical resolution

A
EF, =, ——2 dy,dy > n)\E
) Vd1+d2’ 1,02 nA,

where

F,, is the nth Fresnel zone radius,

d; is the distance of P from one end,

d- is the distance of P from the other end,

A is the wavelength of the transmitted signal.

n=1

' New
i wavefront

A
O
Y

(Wikipedia)

n =1 : First Fresnel zone. Outside this zone a destructive inference greatly reduces the
contribution to the received signal.

F, is typically several hundred kilometers for interplanetary missions.



Residual Doppler shift (Hz)

Multipath

An example of the signal spectrum time
series
Schematic of multipath (Sokolovskiy, 2004)
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Radio holographic method can solve multipath problem (Imamura et al. 2018)



Radio holographic analysis

* One of the radio holographic methods, FSI (“Full Spectrum Inversion”
Jensen et al. 2003) was applied to RS data.
 Spectral analysis is applied to the entire signal at once instead of applying it
to successive short time blocks.
- High vertical resolution + Disentanglement of multipath

GO (geometrical optics) solves the

rays instantaneous ray path at each

>

1 time step

4
i

\ FSI solves the whole time series of
M the signal phase at once

A
A 4

Schematic of multipath (Sokolovskiy, 2004)



Radio occultation measurements of Pluto’s neutral
atmosphere with New Horizons

* Pluto has a tenuous atmosphere composed primarily of N,.

 New Horizons spacecraft performed a radio occultation that
sounded Pluto’s atmosphere In 2015.

» Signals were transmitted by four ground antennas of the NASA
Deep Space Network, and the spacecraft received the signals. The
data streams were digitized, filtered, and stored on the spacecraft
for later transmission to Earth.
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Hinson et al. (2017)

Removal of diffraction effects caused by the surface of Pluto
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H,SO, vapor in Venusian atmosphere
deduced from radio wave absorption

Ingress occultation observed on
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GPS meteorology for Earth

electron density (el/cm”3)

UCAR/COSMIC homepage
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COSMIC : Constellation Observing System for Meteorology, Ionosphere, and Climate

FORMOSAT-3 Occuliations ~ 3 Hrs Coverage

FORMOSAT-3

UCAR/COSMIC homepage

Fig. 1. Constellation design and estimated distribution of GPS RO soundings over a 3-h period from
COSMIC/FORMOSAT-3 and COSMIC-2/FORMOSAT-7. The first tropical constellation of COSMIC-2 will be
launched in 2016, and the second constellation will be launched in 2018. COSMIC-2 will provide an order
of magnitude more GPS RO soundings over the tropics, which will have a significant impact on tropical
cyclone prediction.



Radio occultation observation of the solar

B

Observed
position

o

corona

Radio occultation measurement using spacecraft
signals is a powerful tool to probe the inner heliosphere.

Akatsuki’'s observation:

« Akatsuki was launched in 2010 and inserted into an
orbit around Venus in 2015. During its solar
conjunction, solar corona observation campaigns
have been conducted.

X-band (8.4 GHz) 1-way downlink using an ultra-
stable oscillator (USQO)

Open-loop recording at the Usuda Deep Space
Center, Japan




Intensity scintillation
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Fast wind and Slow wind

Observations in 2011 Observations in 2016
(Imamura et al. 2014, ApJ) (Chiba et al., 2022)
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Phase/frequency fluctuation
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Frequency

fluctuation
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Radial distribution of acoustic waves

Local generation of large-
amplitude acoustic waves ?
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The radial distribution suggests local generation of acoustic waves in the
extended corona, probably through nonlinear dissipation of Alfvén waves
that propagated from the photosphere.

The dissipation of these waves will play key roles in coronal heating.



Radio occultation of rings

Rings are composed of ice particles

The radial profile of ring's optical thickness is
obtained by the movement of the radio ray's

Intersection across the ring.
Conducted by Voyager 1 and Cassini

Plane Wave from Earth

c //ﬁ—)
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Diffraction correction by inverse Fresnel transform

Diffraction by the edge of Encke gap
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800 km wide in Ring A encompassing the 19805827 12:11 density wave and the Mimas 5:3 bending
wave. Theoretical locations of corresponding resonances are as indicated. Both waves are eflectively
masked in the initial diffraction-limited measurement. Note that the envelope of opacity minima of the
bending wave is at a level noticeably smaller than the mean opacity level outside the wave region. (<)
Many more oscillations of the density wave are revealed at 90 m effective resolution. Note that
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Doppler tracking of spacecraft to measure
gravity anomaly

KAGUYA

(Far side of the Moon)

Four-way
Doppler

Two-way RARR
+ 3
Four-way Doppler e

Relay Satellite (Rstar)

Gravity anomaly map of the Moon's surface
obtained by JAXA's SELENE mission
(in mGal = 10-° m/s?)

4way Doppler measurement using
Relay satellite



Doppler tracking of Juno spacecraft

The spacecraft acts as a test particle falling in the gravity field of the planet.
Jupiter’s gravity is inferred from range-rate measurements between a ground
antenna and the spacecraft during perijove passes.

The ground station transmits two carrier signals, at 7,153 MHz (X band) and
34,315 MHz (Ka band). On board, an X-band transponder and a Ka-band
frequency translator lock the incoming carrier signals and retransmit them
back to the ground station at 8,404 MHz and 32,088 MHz, respectively. The

range-rate (Doppler) observable is obtained by comparing the transmitted
and received frequencies.
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Less et al. (2018)

Figure 3 | Gravity disturbances due to
atmospheric dynamics. a, An image of Jupiter
taken by the Hubble Wide Field Camera in 2014
(https://en.wikipedia.org/wiki/Jupiter), showing
the latitudinal dependence of residual gravity
acceleration (in milligals, positive outwards)
and associated 30 uncertainty (shaded area) ata
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is removed. The residual gravity field, which is
dominated by the dynamics of the flows, shows
marked peaks correlated with the band structure.
b, Latitudinal gradient of the measured wind
profile. The largest (negative) peak of

—3.4 +0.4mGal (30) is found at a latitude

of 24° N, where the latitudinal gradient of the
wind speed reaches its largest value. The relation
60 .{ 1  between the gravity disturbances and wind

gradients is discussed in an accompanying paper”.
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“The observed jet streams, as they appear at the cloud level, extend
down to depths of thousands of kilometres beneath the cloud level,
probably to the region of magnetic dissipation at a depth of about 3,000
kilometres”



Microwave radiometer
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« Six antennas measure radio waves at frequencies 600 MHz, 1.2, 2.4, 4.8, 9.6 and 22 GHz

* Abundance of water and ammonia (NH;) in the deep layers of the atmosphere up to S00-

600 km deep

« The combination of different wavelengths and the emission angle should make it possible

to obtain a temperature profile at various levels of the atmosphere.



Lietal. (2017)

NH, concentration (in ppm)

Figure 4. The colored contours show the ammonia concentration in parts per million inverted from nadir brightness tem-
peratures during PJ1 flyby assuming that the deep water abundance is 0.06% (0.65 times solar). The deep ammonia
abundance is 373 ppm, and the reference temperature is 132.1 K at 0.5 bar. The aspect ratio in the horizontal and vertical is

exaggerated.



Microwave spectroscopy

ISS/SMILES to measure trace gases in Earth’s stratosphere
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JUICE(Jupiter Icy Moon Explorer)/
SWI(Submillimetre Wave Instrument)

Kasai et al. (2014)
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